Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2010, Volume 1, Number 2, Pages 136–141 (Mi emj23)  

This article is cited in 1 scientific paper (total in 1 paper)

On imbalances in oriented bipartite graphs

U. Sameea, T. A. Chishtib

a Department of Mathematics, University of Kashmir, Srinagar, India
b Directorate of Distance Education, University of Kashmir, Srinagar, India
Full-text PDF (238 kB) Citations (1)
References:
Abstract: An oriented bipartite graph is the result of assigning a direction to each edge of a simple bipartite graph. For any vertex $x$ in an oriented bipartite graph $D(U,V)$, let $d_{x}^{+}$ and $d_{x}^{-}$ respectively denote the outdegree and indegree of $x$. Define $a_{u_{i}}=d_{u_{i}}^{+}-d_{u_{i}}^{-}$ and $b_{v_{j}}=d_{v_{j}}^{+}-d_{v_{j}}^{-}$ respectively as the imbalances of vertices $u_i$ in $U$ and $v_j$ in $V$. In this paper, we obtain constructive and existence criteria for a pair of sequences of integers to be the imbalances of some oriented bipartite graph. We also show the existence of a bipartite oriented graph with given imbalance set.
Keywords and phrases: digraph, imbalance, outdegree, indegree, oriented graph, oriented bipartite graph, arc.
Received: 29.04.2010
Bibliographic databases:
Document Type: Article
MSC: 05C20
Language: English
Citation: U. Samee, T. A. Chishti, “On imbalances in oriented bipartite graphs”, Eurasian Math. J., 1:2 (2010), 136–141
Citation in format AMSBIB
\Bibitem{SamChi10}
\by U.~Samee, T.~A.~Chishti
\paper On imbalances in oriented bipartite graphs
\jour Eurasian Math. J.
\yr 2010
\vol 1
\issue 2
\pages 136--141
\mathnet{http://mi.mathnet.ru/emj23}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2905178}
\zmath{https://zbmath.org/?q=an:1219.05066}
Linking options:
  • https://www.mathnet.ru/eng/emj23
  • https://www.mathnet.ru/eng/emj/v1/i2/p136
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025