|
Characterization of subdiagonal algebras on noncommutative Lorentz spaces
T. N. Bekjan, A. Kairat Faculty of Mechanics and Mathematics, L.N. Gumilyov Eurasian National University, 13 Kazhymukan St., 010008 Astana, Kazakhstan
Abstract:
Let $(\mathcal{M}, \tau)$ be a finite von Neumann algebra, $\mathcal{A}$ be a tracial subalgebra of $\mathcal{M}$. We prove that $\mathcal{A}$ has $L^{p,q}$-factorization if and only if $\mathcal{A}$ is a subdiagonal algebra. We also obtain some characterizations of subdiagonal algebras.
Keywords and phrases:
noncommutative Lorentz space; tracial subalgebra, subdiagonal algebra.
Received: 08.03.2015
Citation:
T. N. Bekjan, A. Kairat, “Characterization of subdiagonal algebras on noncommutative Lorentz spaces”, Eurasian Math. J., 6:3 (2015), 6–12
Linking options:
https://www.mathnet.ru/eng/emj198 https://www.mathnet.ru/eng/emj/v6/i3/p6
|
Statistics & downloads: |
Abstract page: | 189 | Full-text PDF : | 101 | References: | 70 |
|