Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2014, Volume 5, Number 3, Pages 102–116 (Mi emj167)  

This article is cited in 1 scientific paper (total in 1 paper)

A new characterization of sporadic Higman–Sims and Held groups

Y. Yang, S. Liu

School of Science, Sichuan University of Science and Engineering, Zigong Sichuan, 643000, P. R. China
Full-text PDF (436 kB) Citations (1)
References:
Abstract: Let G be a group and ω(G) be the set of element orders of G. Let kω(G) and sk be the number of elements of order k in G. Let nse(G)={sk|kω(G)}. The projective special linear groups L3(4) and L3(5) are uniquely determined by nse. In this paper, we prove that if G is a group such that nse(G)=nse(M) where M is a sporadic Higman–Sims or Held group, then GM.
Keywords and phrases: element order, sporadic Higman–Sims group, sporadic Held group, Thompson’s problem, number of elements of the same order.
Received: 14.05.2014
Document Type: Article
MSC: 20D05, 20D08, 20D20
Language: English
Citation: Y. Yang, S. Liu, “A new characterization of sporadic Higman–Sims and Held groups”, Eurasian Math. J., 5:3 (2014), 102–116
Citation in format AMSBIB
\Bibitem{YanLiu14}
\by Y.~Yang, S.~Liu
\paper A new characterization of sporadic Higman--Sims and Held groups
\jour Eurasian Math. J.
\yr 2014
\vol 5
\issue 3
\pages 102--116
\mathnet{http://mi.mathnet.ru/emj167}
Linking options:
  • https://www.mathnet.ru/eng/emj167
  • https://www.mathnet.ru/eng/emj/v5/i3/p102
  • This publication is cited in the following 1 articles:
    1. B. Ebrahimzadeh, A. Iranmanesh, H. P. Mosaed, “A new characterization of Ree group 2G2(q) by the order of group and the number of elements with the same order”, Int. J. Group Theory, 6:4 (2017), 1–6  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
    Statistics & downloads:
    Abstract page:289
    Full-text PDF :93
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025