Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2010, Volume 1, Number 2, Pages 31–58 (Mi emj16)  

This article is cited in 7 scientific papers (total in 7 papers)

Hypersingularly perturbed loads for a nonlinear traction boundary value problem. A functional analytic approach

M. Dalla Rivaa, M. Lanza de Cristoforisb

a Departamento de Matemática, Universidade do Porto, Porto, Portugal
b Dipartimento di Matematica Pura ed Applicata, Università degli studi di Padova, Padova, Italia
Full-text PDF (360 kB) Citations (7)
References:
Abstract: Let $\Omega^{i}$ and $\Omega^{o}$ be two bounded open subsets of $\mathbb{R}^{n}$ containing $0$. Let $G^{i}$ be a (nonlinear) map from $\partial\Omega^{i}\times\mathbb{R}^{n}$ to $\mathbb{R}^{n}$. Let $a^{o}$ be a map from $\partial\Omega^{o}$ to the set $M_{n}(\mathbb{R})$ of $n\times n$ matrices with real entries. Let $g$ be a function from $\partial\Omega^{o}$ to $\mathbb{R}^{n}$. Let $\gamma$ be a positive valued function defined on a right neighborhood of $0$ in the real line. Let $T$ be a map from $]1-(2/n),+\infty[\times M_{n}(\mathbb{R})$ to $M_{n}(\mathbb{R})$. Then we consider the problem \[ \{
\begin{array}{ll} \mathrm{div} (T(\omega,Du))=0& {\mathrm{in}} \Omega^{o}\setminus\epsilon\mathrm{cl}\Omega^{i} ,
-T(\omega,Du(x))\nu_{\epsilon\Omega^{i}}(x)=\frac{1}{\gamma(\epsilon)}G^{i}(x/ \epsilon, \gamma(\epsilon)\epsilon^{-1}(\log\epsilon)^{-\delta_{2,n}} u(x))& \forall x\in\epsilon\partial\Omega^{i} ,
T(\omega,Du(x))\nu^{o}(x)=a^{o}(x)u(x)+g(x)& \forall x\in\partial\Omega^{o} , \end{array}
. \] where $\nu_{\epsilon\Omega^{i}}$ and $\nu^{o}$ denote the outward unit normal to $\epsilon\partial \Omega^{i}$ and $\partial\Omega^{o}$, respectively, and where $\epsilon>0$ is a small parameter. Here $(\omega-1)$ plays the role of ratio between the first and second Lamé constants, and $T(\omega,\cdot)$ denotes (a constant multiple of) the linearized Piola Kirchhoff stress tensor, and $\delta_{2,n}$ denotes the Kronecker symbol. Under the condition that $\gamma$ generates a very strong singularity, i.e., the case in which $\lim_{\epsilon\to 0^{+}}\frac{\gamma(\epsilon)}{\epsilon^{n-1}}$ exists in $[0,+\infty[$, we prove that under suitable assumptions the above problem has a family of solutions $\{u(\epsilon,\cdot)\}_{\epsilon\in ]0,\epsilon'[}$ for $\epsilon'$ sufficiently small and we analyze the behavior of such a family as $\epsilon$ is close to $0$ by an approach which is alternative to those of asymptotic analysis.
Keywords and phrases: nonlinear traction boundary value problem, singularly perturbed domain, linearized elastostatics operator, elliptic systems, real analytic continuation in Banach space.
Received: 08.06.2010
Bibliographic databases:
Document Type: Article
Language: English
Citation: M. Dalla Riva, M. Lanza de Cristoforis, “Hypersingularly perturbed loads for a nonlinear traction boundary value problem. A functional analytic approach”, Eurasian Math. J., 1:2 (2010), 31–58
Citation in format AMSBIB
\Bibitem{DalLan10}
\by M.~Dalla Riva, M.~Lanza de Cristoforis
\paper Hypersingularly perturbed loads for a~nonlinear traction boundary value problem. A~functional analytic approach
\jour Eurasian Math. J.
\yr 2010
\vol 1
\issue 2
\pages 31--58
\mathnet{http://mi.mathnet.ru/emj16}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2905171}
\zmath{https://zbmath.org/?q=an:1233.35101}
Linking options:
  • https://www.mathnet.ru/eng/emj16
  • https://www.mathnet.ru/eng/emj/v1/i2/p31
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024