|
This article is cited in 7 scientific papers (total in 7 papers)
Hypersingularly perturbed loads for a nonlinear traction boundary value problem. A functional analytic approach
M. Dalla Rivaa, M. Lanza de Cristoforisb a Departamento de Matemática, Universidade do Porto, Porto, Portugal
b Dipartimento di Matematica Pura ed Applicata, Università degli studi di Padova, Padova, Italia
Abstract:
Let
$\Omega^{i}$ and $\Omega^{o}$ be two bounded open subsets of $\mathbb{R}^{n}$ containing $0$.
Let $G^{i}$ be a (nonlinear) map from $\partial\Omega^{i}\times\mathbb{R}^{n}$ to $\mathbb{R}^{n}$.
Let $a^{o}$ be a map from $\partial\Omega^{o}$ to the set $M_{n}(\mathbb{R})$ of $n\times n$ matrices with real entries. Let $g$ be a function from $\partial\Omega^{o}$ to $\mathbb{R}^{n}$. Let $\gamma$ be a positive valued function defined on a right neighborhood of $0$ in the real line. Let $T$ be a map from $]1-(2/n),+\infty[\times M_{n}(\mathbb{R})$ to $M_{n}(\mathbb{R})$. Then we consider the problem
\[
\{
\begin{array}{ll}
\mathrm{div} (T(\omega,Du))=0& {\mathrm{in}} \Omega^{o}\setminus\epsilon\mathrm{cl}\Omega^{i} ,
-T(\omega,Du(x))\nu_{\epsilon\Omega^{i}}(x)=\frac{1}{\gamma(\epsilon)}G^{i}(x/ \epsilon,
\gamma(\epsilon)\epsilon^{-1}(\log\epsilon)^{-\delta_{2,n}}
u(x))&
\forall x\in\epsilon\partial\Omega^{i} ,
T(\omega,Du(x))\nu^{o}(x)=a^{o}(x)u(x)+g(x)&
\forall x\in\partial\Omega^{o} ,
\end{array}
.
\]
where $\nu_{\epsilon\Omega^{i}}$ and $\nu^{o}$ denote the outward unit normal to $\epsilon\partial \Omega^{i}$ and $\partial\Omega^{o}$, respectively, and where $\epsilon>0$ is a small parameter. Here $(\omega-1)$ plays the role of ratio between the first and second Lamé constants, and $T(\omega,\cdot)$ denotes (a constant multiple of) the linearized Piola Kirchhoff stress tensor, and $\delta_{2,n}$ denotes the Kronecker symbol. Under the condition that $\gamma$ generates a very strong singularity, i.e., the case in which $\lim_{\epsilon\to 0^{+}}\frac{\gamma(\epsilon)}{\epsilon^{n-1}}$ exists in $[0,+\infty[$, we prove that under suitable assumptions the above problem has a family of solutions $\{u(\epsilon,\cdot)\}_{\epsilon\in ]0,\epsilon'[}$ for $\epsilon'$ sufficiently small and we analyze the behavior of such a family as $\epsilon$ is close to $0$ by an approach which is alternative to those of asymptotic analysis.
Keywords and phrases:
nonlinear traction boundary value problem, singularly perturbed domain, linearized elastostatics operator, elliptic systems, real analytic continuation in Banach space.
Received: 08.06.2010
Citation:
M. Dalla Riva, M. Lanza de Cristoforis, “Hypersingularly perturbed loads for a nonlinear traction boundary value problem. A functional analytic approach”, Eurasian Math. J., 1:2 (2010), 31–58
Linking options:
https://www.mathnet.ru/eng/emj16 https://www.mathnet.ru/eng/emj/v1/i2/p31
|
|