Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2014, Volume 5, Number 2, Pages 60–77 (Mi emj157)  

This article is cited in 3 scientific papers (total in 3 papers)

Infiniteness of the number of eigenvalues embedded in the essential spectrum of a $2\times2$ operator matrix

M. I. Muminova, T. H. Rasulovb

a Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor Bahru, Malaysia
b Faculty of Physics and Mathematics, Bukhara State University, 11 M. Ikbol Str., 200100, Bukhara, Uzbekistan
Full-text PDF (447 kB) Citations (3)
References:
Abstract: In the present paper a $2\times2$ block operator matrix $\mathbf H$ is considered as a bounded self-adjoint operator in the direct sum of two Hilbert spaces. The structure of the essential spectrum of $\mathbf H$ is studied. Under some natural conditions the infiniteness of the number of eigenvalues is proved, located inside, in the gap or below the bottom of the essential spectrum of $\mathbf H$.
Keywords and phrases: block operator matrix, bosonic Fock space, discrete and essential spectra, eigenvalues embedded in the essential spectrum, discrete spectrum asymptotics, Birman–Schwinger principle, Hilbert–Schmidt class.
Received: 13.10.2013
Document Type: Article
MSC: 81Q10, 35P20, 47N50
Language: English
Citation: M. I. Muminov, T. H. Rasulov, “Infiniteness of the number of eigenvalues embedded in the essential spectrum of a $2\times2$ operator matrix”, Eurasian Math. J., 5:2 (2014), 60–77
Citation in format AMSBIB
\Bibitem{MumRas14}
\by M.~I.~Muminov, T.~H.~Rasulov
\paper Infiniteness of the number of eigenvalues embedded in the essential spectrum of a~$2\times2$ operator matrix
\jour Eurasian Math. J.
\yr 2014
\vol 5
\issue 2
\pages 60--77
\mathnet{http://mi.mathnet.ru/emj157}
Linking options:
  • https://www.mathnet.ru/eng/emj157
  • https://www.mathnet.ru/eng/emj/v5/i2/p60
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024