Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2014, Volume 5, Number 1, Pages 95–121 (Mi emj151)  

This article is cited in 6 scientific papers (total in 6 papers)

The real and complex techniques in harmonic analysis from the point of view of covariant transform

V. V. Kisil

School of Mathematics, University of Leeds, Leeds LS29JT, UK
Full-text PDF (537 kB) Citations (6)
References:
Abstract: This paper reviews complex and real techniques in harmonic analysis. We describe the common source of both approaches rooted in the covariant transform generated by the affine group.
Keywords and phrases: wavelet, coherent state, covariant transform, reconstruction formula, the affine group, $ax+b$-group, square integrable representations, admissible vectors, Hardy space, fiducial operator, approximation of the identity, atom, nucleus, atomic decomposition, Cauchy integral, Poisson integral, Hardy–Littlewood maximal function, grand maximal function, vertical maximal function, non-tangential maximal function, intertwining operator, Cauchy–Riemann operator, Laplace operator, singular integral operator (SIO), Hilbert transform, boundary behaviour, Carleson measure, Littlewood–Paley theory.
Received: 12.09.2013
Document Type: Article
MSC: Primary 42-02; Secondary 42A20, 42B20, 42B25, 42B35, 42C40, 43A50, 43A80
Language: English
Citation: V. V. Kisil, “The real and complex techniques in harmonic analysis from the point of view of covariant transform”, Eurasian Math. J., 5:1 (2014), 95–121
Citation in format AMSBIB
\Bibitem{Kis14}
\by V.~V.~Kisil
\paper The real and complex techniques in harmonic analysis from the point of view of covariant transform
\jour Eurasian Math. J.
\yr 2014
\vol 5
\issue 1
\pages 95--121
\mathnet{http://mi.mathnet.ru/emj151}
Linking options:
  • https://www.mathnet.ru/eng/emj151
  • https://www.mathnet.ru/eng/emj/v5/i1/p95
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024