Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2013, Volume 4, Number 3, Pages 8–19 (Mi emj129)  

This article is cited in 1 scientific paper (total in 1 paper)

The O'Neil inequality for the Hankel convolution operator and some applications

C. Aykola, V. S. Guliyevbc, A. Serbetcia

a Ankara University, Department of Mathematics, 06100 Tandogan, Ankara, Turkey
b Ahi Evran University, Department of Mathematics, 40100, Kirsehir, Turkey
c Institute of Mathematics and Mechanics Academy of Sciences of Azerbaijan, 9, B. Vaxabzade, Baku, Republic of Azerbaijan, AZ1141
Full-text PDF (404 kB) Citations (1)
References:
Abstract: In this paper we prove the O'Neil inequality for the Hankel (Fourier–Bessel) convolution operator and consider some of its applications. By using the O'Neil inequality we study the boundedness of the Riesz–Hankel potential operator $I_{\beta,\alpha}$, associated with the Hankel transform in the Lorentz–Hankel spaces $L_{p,r,\alpha}(0,\infty)$. We establish necessary and sufficient conditions for the boundedness of $I_{\beta,\alpha}$, from the Lorentz–Hankel spaces $L_{p,r,\alpha}(0,\infty)$ to $L_{q,s,\alpha}(0,\infty)$, $1<p<q<\infty$, $\le r\le s\le\infty$. We obtain boundedness conditions in the limiting cases $p=1$ and $p=(2\alpha+2)/\beta$. Finally, for the limiting case $p=(2\alpha+2)/\beta$ we prove an analogue of the Adams theorem on exponential integrability of $I_{\beta,\alpha}$, in $L_{(2\alpha+2)/\beta,r,\alpha}(0,\infty)$.
Keywords and phrases: Bessel differential operator, Hankel transform, $\alpha$ -rearrangement, Lorentz–Hankel spaces, Riesz–Hankel potential.
Received: 19.03.2013
Document Type: Article
MSC: 46E30, 42B35, 47G10
Language: English
Citation: C. Aykol, V. S. Guliyev, A. Serbetci, “The O'Neil inequality for the Hankel convolution operator and some applications”, Eurasian Math. J., 4:3 (2013), 8–19
Citation in format AMSBIB
\Bibitem{AykGulSer13}
\by C.~Aykol, V.~S.~Guliyev, A.~Serbetci
\paper The O'Neil inequality for the Hankel convolution operator and some applications
\jour Eurasian Math. J.
\yr 2013
\vol 4
\issue 3
\pages 8--19
\mathnet{http://mi.mathnet.ru/emj129}
Linking options:
  • https://www.mathnet.ru/eng/emj129
  • https://www.mathnet.ru/eng/emj/v4/i3/p8
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024