Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2012, Volume 3, Number 4, Pages 44–52 (Mi emj104)  

This article is cited in 5 scientific papers (total in 5 papers)

Orthogonality and smooth points in $C(K)$ and $C_b(\Omega)$

D. J. Kečkić

Faculty of Mathematics, University of Belgrade, Beograd
Full-text PDF (434 kB) Citations (5)
References:
Abstract: For the usual norm on spaces $C(K)$ and $C_b(\Omega)$ of all continuous functions on a compact Hausdorff space $K$ (all bounded continuous functions on a locally compact Hausdorff space $\Omega$), the following equalities are proved:
$$ \lim_{t\to0+}\frac{\|f+tg\|_{C(K)}-\|f\|_{C(K)}}t=\max_{x\in\{z\mid\,|f(z)|=\|f\|\}}\operatorname{Re}(e^{-i\arg f(x)}g(x)) $$
and
$$ \lim_{t\to0+}\frac{\|f+tg\|_{C_b(\Omega)}-\|f\|_{C_b(\Omega)}}t=\inf_{\delta>0}\sup_{x\in\{z\mid\,|f(z)|\ge\|f\|-\delta\}}\operatorname{Re}(e^{-i\arg f(x)}g(x)). $$
These equalities are used to characterize the orthogonality in the sense of James (Birkhoff) in spaces $C(K)$ and $C_b(\Omega)$ as well as to give necessary and sufficient conditions for a point on the unit sphere to be a smooth point.
Keywords and phrases: orthogonality in the sense of James, Gateaux derivative, smooth points.
Received: 22.11.2011
Bibliographic databases:
Document Type: Article
MSC: 46G05, 46E15, 49J50
Language: English
Citation: D. J. Kečkić, “Orthogonality and smooth points in $C(K)$ and $C_b(\Omega)$”, Eurasian Math. J., 3:4 (2012), 44–52
Citation in format AMSBIB
\Bibitem{Kec12}
\by D.~J.~Ke{\v{c}}ki{\'c}
\paper Orthogonality and smooth points in $C(K)$ and $C_b(\Omega)$
\jour Eurasian Math. J.
\yr 2012
\vol 3
\issue 4
\pages 44--52
\mathnet{http://mi.mathnet.ru/emj104}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3040686}
\zmath{https://zbmath.org/?q=an:1281.46015}
Linking options:
  • https://www.mathnet.ru/eng/emj104
  • https://www.mathnet.ru/eng/emj/v3/i4/p44
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024