|
Eurasian Mathematical Journal, 2012, Volume 3, Number 4, Pages 44–52
(Mi emj104)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Orthogonality and smooth points in $C(K)$ and $C_b(\Omega)$
D. J. Kečkić Faculty of Mathematics, University of Belgrade, Beograd
Abstract:
For the usual norm on spaces $C(K)$ and $C_b(\Omega)$ of all continuous functions on a compact Hausdorff space $K$ (all bounded continuous functions on a locally compact Hausdorff space $\Omega$), the following equalities are proved:
$$
\lim_{t\to0+}\frac{\|f+tg\|_{C(K)}-\|f\|_{C(K)}}t=\max_{x\in\{z\mid\,|f(z)|=\|f\|\}}\operatorname{Re}(e^{-i\arg f(x)}g(x))
$$
and
$$
\lim_{t\to0+}\frac{\|f+tg\|_{C_b(\Omega)}-\|f\|_{C_b(\Omega)}}t=\inf_{\delta>0}\sup_{x\in\{z\mid\,|f(z)|\ge\|f\|-\delta\}}\operatorname{Re}(e^{-i\arg f(x)}g(x)).
$$
These equalities are used to characterize the orthogonality in the sense of James (Birkhoff) in spaces $C(K)$ and $C_b(\Omega)$ as well as to give necessary and sufficient conditions for a point on the unit sphere to be a smooth point.
Keywords and phrases:
orthogonality in the sense of James, Gateaux derivative, smooth points.
Received: 22.11.2011
Citation:
D. J. Kečkić, “Orthogonality and smooth points in $C(K)$ and $C_b(\Omega)$”, Eurasian Math. J., 3:4 (2012), 44–52
Linking options:
https://www.mathnet.ru/eng/emj104 https://www.mathnet.ru/eng/emj/v3/i4/p44
|
|