European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, 2018, Volume 24, Issue 3, Pages 1075–1105 DOI: https://doi.org/10.1051/cocv/2017037(Mi ecocv2)
This article is cited in 6 scientific papers (total in 6 papers)
Intrinsic random walks in Riemannian and sub-Riemannian geometry via volume sampling
This publication is cited in the following 6 articles:
Simon Schwarz, Michael Herrmann, Anja Sturm, Max Wardetzky, “Efficient Random Walks on Riemannian Manifolds”, Found Comput Math, 2023
Matteo Gallone, Alessandro Michelangeli, Springer Monographs in Mathematics, Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians, 2023, 237
Ivan Beschastnyi, Ugo Boscain, Eugenio Pozzoli, “Quantum Confinement for the Curvature Laplacian -Δ + cK on 2D-Almost-Riemannian Manifolds”, Potential Anal, 58:3 (2023), 441
Matteo Gallone, Alessandro Michelangeli, Eugenio Pozzoli, “Quantum geometric confinement and dynamical transmission in Grushin cylinder”, Rev. Math. Phys., 34:07 (2022)
Fabrice Baudoin, Maria Gordina, Phanuel Mariano, “Gradient bounds for Kolmogorov type diffusions”, Ann. Inst. H. Poincaré Probab. Statist., 56:1 (2020)