Dal'nevostochnyi Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dal'nevost. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dal'nevostochnyi Matematicheskii Zhurnal, 2024, Volume 24, Number 1, Pages 45–54
DOI: https://doi.org/10.47910/FEMJ202405
(Mi dvmg530)
 

Reachability of inequalities from Lame's theorem

I. D. Kan

Moscow Aviation Institute (National Research University)
References:
Abstract: In this paper, the following result is proved. The number of steps in Euclid's algorithm for two natural arguments, the smaller of which has $v$ digital digits in the decimal system, does not exceed the integer part of the fraction \linebreak $(v+ \lg ({\sqrt{5}}/ {\Phi}))/ \lg \Phi$, where $\Phi=(1+\sqrt{5})/2$, and this estimate is achieved for every natural $v$. It is also proved that partial or asymptotic reachability is valid for the other two known upper bounds on the length of the Euclid algorithm.
Key words: Lame's theorem, Euclid's algorithm.
Received: 05.11.2023
Accepted: 24.05.2024
Document Type: Article
UDC: 511.321+511.31
MSC: 11B39
Language: Russian
Citation: I. D. Kan, “Reachability of inequalities from Lame's theorem”, Dal'nevost. Mat. Zh., 24:1 (2024), 45–54
Citation in format AMSBIB
\Bibitem{Kan24}
\by I.~D.~Kan
\paper Reachability of inequalities from Lame's theorem
\jour Dal'nevost. Mat. Zh.
\yr 2024
\vol 24
\issue 1
\pages 45--54
\mathnet{http://mi.mathnet.ru/dvmg530}
\crossref{https://doi.org/10.47910/FEMJ202405}
Linking options:
  • https://www.mathnet.ru/eng/dvmg530
  • https://www.mathnet.ru/eng/dvmg/v24/i1/p45
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дальневосточный математический журнал
    Statistics & downloads:
    Abstract page:56
    Full-text PDF :38
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024