Dal'nevostochnyi Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dal'nevost. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dal'nevostochnyi Matematicheskii Zhurnal, 2022, Volume 22, Number 2, Pages 255–256
DOI: https://doi.org/10.47910/FEMJ202235
(Mi dvmg498)
 

Using 2D/3D convolutional neural networks and direct numerical modeling for transcranial ultrasound problems

A. V. Vasyukov, A. S. Stankevich, K. A. Beklemysheva, I. B. Petrov

Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
Abstract: The paper considers the problems of modeling diagnostic medical ultrasound in relation to the study of cerebral vessels through the skull wall. The bone tissue of the skull wall distorts the wave fronts, creating artifacts and aberrations in the image. The report presents mathematical models and numerical methods for solving a direct problem - calculating a numerical ultrasound image (B-scan). The models and methods cover an acoustically homogeneous medium, reflecting boundaries between different tissues, individual bright point reflectors. The report also presents the results of solving the inverse problem - restoring the real configuration of the media under investigation based on ultrasonic data. 2D and 3D convolutional neural networks are used for the inverse problem.
Key words: ultrasound, numerical modeling, inverse problem, convolutional neural networks.
Funding agency Grant number
Russian Science Foundation 22-11-00142
The research was supported by the Russian Science Foundation (Project No. 22-11-00142).
Received: 02.10.2022
Bibliographic databases:
Document Type: Article
UDC: 519.6
MSC: Primary 68T07; Secondary 74J25
Language: English
Citation: A. V. Vasyukov, A. S. Stankevich, K. A. Beklemysheva, I. B. Petrov, “Using 2D/3D convolutional neural networks and direct numerical modeling for transcranial ultrasound problems”, Dal'nevost. Mat. Zh., 22:2 (2022), 255–256
Citation in format AMSBIB
\Bibitem{VasStaBek22}
\by A.~V.~Vasyukov, A.~S.~Stankevich, K.~A.~Beklemysheva, I.~B.~Petrov
\paper Using 2D/3D convolutional neural networks and direct numerical modeling for transcranial ultrasound problems
\jour Dal'nevost. Mat. Zh.
\yr 2022
\vol 22
\issue 2
\pages 255--256
\mathnet{http://mi.mathnet.ru/dvmg498}
\crossref{https://doi.org/10.47910/FEMJ202235}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4529969}
Linking options:
  • https://www.mathnet.ru/eng/dvmg498
  • https://www.mathnet.ru/eng/dvmg/v22/i2/p255
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дальневосточный математический журнал
    Statistics & downloads:
    Abstract page:85
    Full-text PDF :28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024