Dal'nevostochnyi Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dal'nevost. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dal'nevostochnyi Matematicheskii Zhurnal, 2022, Volume 22, Number 2, Pages 218–224
DOI: https://doi.org/10.47910/FEMJ202229
(Mi dvmg492)
 

Numerical methods for systems of diffusion and superdiffusion equations with Neumann boundary conditions and with delay

V. G. Pimenova, A. B. Lozhnikovb, M. Ibrahima

a Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
b N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: A feature of many mathematical models is the presence of two equations of the diffusion type with Neumann boundary conditions and the delay effect, for example, in the model of interaction between a tumor and the immune system. In this paper we construct and study the orders of convergence of analogues of the implicit method and the Crank-Nicolson method. Also, for a system of space fractional superdiffusion-type equations with delay and Neumann boundary conditions, an analogue of the Crank-Nicolson method is constructed. To approximate the two-sided fractional Riesz derivatives, the shifted Grunwald-Letnikov formulas are used; to take into account the delay effect, interpolation and extrapolation of the discrete history of the model are used.
Key words: Systems of diffusion equations, Neumann conditions, delay, superdiffusion, Crank-Nicolson method.
Funding agency Grant number
Russian Science Foundation 22-21-00075
The work is supported by the Russian Science Foundation, project 22-21-00075.
Received: 01.07.2022
Bibliographic databases:
Document Type: Article
UDC: 519.63
MSC: 65N06
Language: English
Citation: V. G. Pimenov, A. B. Lozhnikov, M. Ibrahim, “Numerical methods for systems of diffusion and superdiffusion equations with Neumann boundary conditions and with delay”, Dal'nevost. Mat. Zh., 22:2 (2022), 218–224
Citation in format AMSBIB
\Bibitem{PimLozIbr22}
\by V.~G.~Pimenov, A.~B.~Lozhnikov, M.~Ibrahim
\paper Numerical methods for systems of diffusion and superdiffusion equations with Neumann boundary conditions and with delay
\jour Dal'nevost. Mat. Zh.
\yr 2022
\vol 22
\issue 2
\pages 218--224
\mathnet{http://mi.mathnet.ru/dvmg492}
\crossref{https://doi.org/10.47910/FEMJ202229}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4529963}
Linking options:
  • https://www.mathnet.ru/eng/dvmg492
  • https://www.mathnet.ru/eng/dvmg/v22/i2/p218
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дальневосточный математический журнал
    Statistics & downloads:
    Abstract page:82
    Full-text PDF :28
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024