Abstract:
The inverse problem of recovering
the electron diffusion coefficient is considered.
Within the framework of the optimization approach, this problem is reduced to the multiplicative control one.
The solvability of the considered extremum problem is proven.
Key words:
drift-diffusion electron model,
polar dielectric charging model, multiplicative control problem,
inverse coefficients problem.
The first author was supported by
the Ministry of Science and Higher Education of the Russian Federation
(Project No. 122082400001-8),
the second author was supported by
the Russian Science Foundation (Project number: 22-21-00271).
Citation:
N. N. Maksimova, R. V. Brizitskii, “Inverse problem of recovering the electron diffusion coefficient”, Dal'nevost. Mat. Zh., 22:2 (2022), 201–206
\Bibitem{MakBri22}
\by N.~N.~Maksimova, R.~V.~Brizitskii
\paper Inverse problem of recovering the electron diffusion coefficient
\jour Dal'nevost. Mat. Zh.
\yr 2022
\vol 22
\issue 2
\pages 201--206
\mathnet{http://mi.mathnet.ru/dvmg489}
\crossref{https://doi.org/10.47910/FEMJ202226}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4529960}
Linking options:
https://www.mathnet.ru/eng/dvmg489
https://www.mathnet.ru/eng/dvmg/v22/i2/p201
This publication is cited in the following 2 articles:
R. V. Brizitskii, N. N. Maksimova, “O edinstvennosti resheniya zadachi multiplikativnogo upravleniya dlya modeli dreifa–diffuzii elektronov”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 34:1 (2024), 3–18
R. V. Brizitskii, N. N. Maksimova, A. G. Maslovskaya, “Inverse problems for the diffusion-drift model of charging of an inhomogeneous polar dielectric”, Comput. Math. Math. Phys., 63:9 (2023), 1685–1699