Dal'nevostochnyi Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dal'nevost. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dal'nevostochnyi Matematicheskii Zhurnal, 2022, Volume 22, Number 1, Pages 91–99
DOI: https://doi.org/10.47910/FEMJ202209
(Mi dvmg472)
 

Polynomial Somos sequences II

M. A. Romanov

Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences
References:
Abstract: It was proved in [1] that for $k=4,5,6,7$ the elements of the Somos-$k$ sequence defined by the recurrence
$$S_k(n+k)S_k(n)=\sum_{1\leqslant i\leqslant k/2}\alpha_i x_0\dots x_{k-1}S_k(n+k-i)S_k(n+i)$$
and initial values $S_k(j)=x_j$ ($j=0,\dots,k-1$) are polynomials in the variables $x_0,\dots,x_{k-1}$. The unit powers of the variables $x_j$ in the factors \linebreak $\alpha_i x_0\dots x_{k-1}$ can be reduced. In this paper, we find the smallest values of these powers, at which the polynomiality of the above sequence is preserved.
Key words: Somos sequences, ultradiscrete sequences.
Funding agency Grant number
Russian Science Foundation 19-11-00065
The study was carried out at the expense of a grant from the Russian Science Foundation No. 19-11-00065
Received: 30.05.2022
Bibliographic databases:
Document Type: Article
UDC: 517.583, 512.742.72
MSC: 33E05
Language: Russian
Citation: M. A. Romanov, “Polynomial Somos sequences II”, Dal'nevost. Mat. Zh., 22:1 (2022), 91–99
Citation in format AMSBIB
\Bibitem{Rom22}
\by M.~A.~Romanov
\paper Polynomial Somos sequences II
\jour Dal'nevost. Mat. Zh.
\yr 2022
\vol 22
\issue 1
\pages 91--99
\mathnet{http://mi.mathnet.ru/dvmg472}
\crossref{https://doi.org/10.47910/FEMJ202209}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4448032}
Linking options:
  • https://www.mathnet.ru/eng/dvmg472
  • https://www.mathnet.ru/eng/dvmg/v22/i1/p91
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дальневосточный математический журнал
    Statistics & downloads:
    Abstract page:97
    Full-text PDF :35
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024