Dal'nevostochnyi Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dal'nevost. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dal'nevostochnyi Matematicheskii Zhurnal, 2019, Volume 19, Number 2, Pages 197–205 (Mi dvmg408)  

Solution of functional equations related to elliptic functions. III

A. A. Illarionovab, N. V. Markovaba

a Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences
b Pacific National University, Khabarovsk
References:
Abstract: Let $s,m\in {\Bbb N}$, $s\ge 2$. We solve the functional equation
$$ f_1(x_1+z)\ldots f_{s-1}(x_{s-1}+z)f_s(x_1+\ldots +x_{s-1}-z) = \sum_{j=1}^{m} \varphi_j(x_1,\ldots,x_{s-1})\psi_j(z), $$
for unknown entire functions $f_1,\ldots,f_s:{\Bbb C}\to {\Bbb C}$, $\varphi_j: {\Bbb C}^{s-1}\to {\Bbb C}$, $\psi_j: {\Bbb C}\to {\Bbb C}$ in the case of $s\ge 3$, $m\le 2s-1$. All non-elementary solutions are described by the Weierstrass sigma-function. Previously, such results were known for $m\le s+1$. The considered equation arises in the study of polylinear functional-differential operators and multidimensional vector addition theorems.
Key words: addition theorem, functional equation, Weierstrass sigma-function, theta function, elliptic function.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00638
The work of the second author was supported by the RFBR (project N 18-01-00638).
Received: 30.05.2019
Document Type: Article
UDC: 517.965, 517.583
MSC: Primary 39B32; Secondary 33E05
Language: Russian
Citation: A. A. Illarionov, N. V. Markova, “Solution of functional equations related to elliptic functions. III”, Dal'nevost. Mat. Zh., 19:2 (2019), 197–205
Citation in format AMSBIB
\Bibitem{IllMar19}
\by A.~A.~Illarionov, N.~V.~Markova
\paper Solution of functional equations related to elliptic functions. III
\jour Dal'nevost. Mat. Zh.
\yr 2019
\vol 19
\issue 2
\pages 197--205
\mathnet{http://mi.mathnet.ru/dvmg408}
Linking options:
  • https://www.mathnet.ru/eng/dvmg408
  • https://www.mathnet.ru/eng/dvmg/v19/i2/p197
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дальневосточный математический журнал
    Statistics & downloads:
    Abstract page:231
    Full-text PDF :58
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024