Dal'nevostochnyi Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dal'nevost. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dal'nevostochnyi Matematicheskii Zhurnal, 2019, Volume 19, Number 1, Pages 10–19 (Mi dvmg391)  

This article is cited in 2 scientific papers (total in 2 papers)

Extremal cubature formulas for anisotropic classes

V. A. Bykovskii

Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences
Full-text PDF (530 kB) Citations (2)
References:
Abstract: Let $E^{(\alpha; s)}$ be a class of periodical functions
$$ f(x_1, \dots, x_s)=\sum_{(m_1, \dots, m_s)\in \mathbb{Z}^s} c(m_1, \dots, m_s)\exp\left(2\pi i(m_1 x_1+\dots+ m_s x_s)\right) $$
with $ \left|c(m_1, \dots, m_s)\right|\leq \prod_{j=1} \left(\text{max} (1, |m_j|)\right)^{-\alpha}, $ and $1< \alpha < \infty$. In this work for all natural numbers $1< N < \infty$ we prove best possible estimation
$$ R_N\left(E^{(\alpha; s)}\right)\ll_{\alpha, s} \frac{\left(\log N\right)^{s-1}}{N^\alpha} $$
for the error of the best cubature formula on the class $E^{(\alpha; s)}$ with $N$ nodes and weights. Similar results are proved for other classes of functions.
Key words: cubature formulas, anisotropic classes of functions.
Received: 21.05.2019
Document Type: Article
UDC: 519.68
MSC: 65J01
Language: Russian
Citation: V. A. Bykovskii, “Extremal cubature formulas for anisotropic classes”, Dal'nevost. Mat. Zh., 19:1 (2019), 10–19
Citation in format AMSBIB
\Bibitem{Byk19}
\by V.~A.~Bykovskii
\paper Extremal cubature formulas for anisotropic classes
\jour Dal'nevost. Mat. Zh.
\yr 2019
\vol 19
\issue 1
\pages 10--19
\mathnet{http://mi.mathnet.ru/dvmg391}
Linking options:
  • https://www.mathnet.ru/eng/dvmg391
  • https://www.mathnet.ru/eng/dvmg/v19/i1/p10
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дальневосточный математический журнал
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :88
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024