|
Dal'nevostochnyi Matematicheskii Zhurnal, 2019, Volume 19, Number 1, Pages 10–19
(Mi dvmg391)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Extremal cubature formulas for anisotropic classes
V. A. Bykovskii Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences
Abstract:
Let $E^{(\alpha; s)}$ be a class of periodical functions
$$
f(x_1, \dots, x_s)=\sum_{(m_1, \dots, m_s)\in \mathbb{Z}^s} c(m_1, \dots, m_s)\exp\left(2\pi i(m_1 x_1+\dots+ m_s x_s)\right)
$$
with
$
\left|c(m_1, \dots, m_s)\right|\leq \prod_{j=1} \left(\text{max} (1, |m_j|)\right)^{-\alpha},
$
and $1< \alpha < \infty$. In this work for all natural numbers $1< N < \infty$ we prove best possible estimation
$$
R_N\left(E^{(\alpha; s)}\right)\ll_{\alpha, s} \frac{\left(\log N\right)^{s-1}}{N^\alpha}
$$
for the error of the best cubature formula on the class
$E^{(\alpha; s)}$ with $N$ nodes and weights. Similar results are proved for other classes of functions.
Key words:
cubature formulas, anisotropic classes of functions.
Received: 21.05.2019
Citation:
V. A. Bykovskii, “Extremal cubature formulas for anisotropic classes”, Dal'nevost. Mat. Zh., 19:1 (2019), 10–19
Linking options:
https://www.mathnet.ru/eng/dvmg391 https://www.mathnet.ru/eng/dvmg/v19/i1/p10
|
Statistics & downloads: |
Abstract page: | 323 | Full-text PDF : | 88 | References: | 51 |
|