|
Dal'nevostochnyi Matematicheskii Zhurnal, 2016, Volume 16, Number 2, Pages 181–185
(Mi dvmg332)
|
|
|
|
On the rank of a finite set of theta functions
M. D. Monina Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences
Abstract:
In the work for the theta function
$$
\theta(z)=\theta(z;q)=\sum\limits_{n=-\infty}^{\infty}e^{2izn}q^{n^2}
$$
identity
\begin{gather*}
\theta(z_1+w)\dots\theta(z_{k-1}+w)\theta(z_1+\dots+z_{k-1}-w)=\sum\limits_{i=1}^{s}\varphi_i(z_1,\dots,z_{k-1})\psi_i(w) \\
(\forall z_1,\dots, z_{k-1}, w \in \mathbb{C})
\end{gather*}
with some clearly indicates theta functions $\psi_i$ of one variable and functions $\varphi_i$ of $k-1$ variables is proved.
Key words:
theta function, elliptic function, Weierstrass sigma-function.
Received: 10.10.2016
Citation:
M. D. Monina, “On the rank of a finite set of theta functions”, Dal'nevost. Mat. Zh., 16:2 (2016), 181–185
Linking options:
https://www.mathnet.ru/eng/dvmg332 https://www.mathnet.ru/eng/dvmg/v16/i2/p181
|
|