Dal'nevostochnyi Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dal'nevost. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dal'nevostochnyi Matematicheskii Zhurnal, 2015, Volume 15, Number 2, Pages 133–155 (Mi dvmg305)  

This article is cited in 2 scientific papers (total in 2 papers)

On regular systems of algebraic $p$-adic numbers of arbitrary degree in small cylinders

N. V. Budarinaa, F. Götzeb

a Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences, 680000 Khabarovsk, Russia, Dzerzhinsky st., 54
b Faculty of Mathematics, University of Bielefeld, P. O. Box 10 01 31, 33501 Bielefeld, Germany
Full-text PDF (620 kB) Citations (2)
References:
Abstract: In this paper we prove that for any sufficiently large $Q\in{\mathbb N}$ there exist cylinders $K\subset{\mathbb Q}_p$ with Haar measure $\mu(K)\le \frac{1}{2}Q^{-1}$ which do not contain algebraic $p$-adic numbers $\alpha$ of degree $\deg\alpha=n$ and height $H(\alpha)\le Q$. The main result establishes in any cylinder $K$, $\mu(K)>c_1Q^{-1}$, $c_1>c_0(n)$, the existence of at least $c_{3}Q^{n+1}\mu(K)$ algebraic $p$-adic numbers $\alpha\in K$ of degree $n$ and $H(\alpha)\le Q$.
Key words: integer polynomials, algebraic $p$-adic numbers, regular system, Haar measure.
Received: 22.09.2015
Bibliographic databases:
Document Type: Article
UDC: 511.42
MSC: Primary 11K60; Secondary 11J61, 11J83
Language: English
Citation: N. V. Budarina, F. Götze, “On regular systems of algebraic $p$-adic numbers of arbitrary degree in small cylinders”, Dal'nevost. Mat. Zh., 15:2 (2015), 133–155
Citation in format AMSBIB
\Bibitem{BudGot15}
\by N.~V.~Budarina, F.~G\"otze
\paper On regular systems of algebraic $p$-adic numbers of arbitrary degree in small cylinders
\jour Dal'nevost. Mat. Zh.
\yr 2015
\vol 15
\issue 2
\pages 133--155
\mathnet{http://mi.mathnet.ru/dvmg305}
\elib{https://elibrary.ru/item.asp?id=25058090}
Linking options:
  • https://www.mathnet.ru/eng/dvmg305
  • https://www.mathnet.ru/eng/dvmg/v15/i2/p133
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дальневосточный математический журнал
    Statistics & downloads:
    Abstract page:237
    Full-text PDF :59
    References:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024