Dal'nevostochnyi Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dal'nevost. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dal'nevostochnyi Matematicheskii Zhurnal, 2014, Volume 14, Number 1, Pages 41–47 (Mi dvmg271)  

This article is cited in 1 scientific paper (total in 1 paper)

Spectral characteristics of the self-balanced stress fields

M. A. Guzev

Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok
Full-text PDF (106 kB) Citations (1)
References:
Abstract: We investigate a class of self-balanced stress fields which is parameterized by a stress function. The fuction is considered to be an element of the spectrum of the biharmonic operator. For different types of boundary conditions we constructed the spectral characteristics of the operator.
Key words: self-balanced stress fields, non-Euclidean continuum model, biharmonic equation.
Received: 09.01.2014
Document Type: Article
UDC: 517.983.8
MSC: 46B70
Language: Russian
Citation: M. A. Guzev, “Spectral characteristics of the self-balanced stress fields”, Dal'nevost. Mat. Zh., 14:1 (2014), 41–47
Citation in format AMSBIB
\Bibitem{Guz14}
\by M.~A.~Guzev
\paper Spectral characteristics of the self-balanced stress fields
\jour Dal'nevost. Mat. Zh.
\yr 2014
\vol 14
\issue 1
\pages 41--47
\mathnet{http://mi.mathnet.ru/dvmg271}
Linking options:
  • https://www.mathnet.ru/eng/dvmg271
  • https://www.mathnet.ru/eng/dvmg/v14/i1/p41
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дальневосточный математический журнал
    Statistics & downloads:
    Abstract page:276
    Full-text PDF :93
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024