|
Dal'nevostochnyi Matematicheskii Zhurnal, 2011, Volume 11, Number 2, Pages 149–154
(Mi dvmg218)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On the number of local minima of integer lattices
A. A. Illarionova, Y. A. Soykab a Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences, Khabarovsk
b Pacific National University, Khabarovsk
Abstract:
Let $E_s(N)$ be the average number of local minima of $s$-dimensional integer lattices with determinant equals $N$. We prove the following estimates
$$
\frac{2^{-1}}{(s-1)!}+O_s\left(\frac{1}{\ln N}\right)\le\frac{E_s(N)}{\ln^{s-1}N}\le\frac{2^s}{(s-1)!}+O_s\left(\frac{1}{\ln N}\right)
$$
for any prime $N$. Using this result we have a new lower bound for maximum number of local minima of integer lattices.
Key words:
local minimum, multidimensional continuous fraction.
Received: 13.09.2011
Citation:
A. A. Illarionov, Y. A. Soyka, “On the number of local minima of integer lattices”, Dal'nevost. Mat. Zh., 11:2 (2011), 149–154
Linking options:
https://www.mathnet.ru/eng/dvmg218 https://www.mathnet.ru/eng/dvmg/v11/i2/p149
|
|