Dal'nevostochnyi Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dal'nevost. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dal'nevostochnyi Matematicheskii Zhurnal, 2002, Volume 3, Number 1, Pages 34–51 (Mi dvmg114)  

Precise large deviation for random sums of random walks with dependent heavy-tailed steps

Dingcheng Wang, Chun Su, Zhishui Hu

University of Science and Technology of China
References:
Abstract: In most applications the assumption of independent step sizes is, clearly, unrealistic. It is an important way to model the dependent steps $\{X_n \}_{n=1}^{\infty}$ of the random walk as a two-sided linear process, $X_n=\sum\limits_{j=-\infty}^{\infty}\varphi_{n-j} \eta_j$, $n=1,2,3,\dots$, where $\{\eta,\eta_n,\ n=0,\pm 1,\pm 2,\pm 3,\dots\}$ is a sequence of $iid$ random variables with finite mean $\mu>0$ . Moreover suppose that $\eta$ satisfies certain tailed balance condition and its distribution function belongs to $ERV(-\alpha,-\beta)$ with $1<\alpha\le\beta<\infty$. Denote $S_n=X_1+X_2+\dots+X_n$, $n\ge 1$. At first we discuss precise large deviation problems of non-random sums $\{S_n-ES_n\}_{ n=1}^{\infty}$, then discuss precise large deviation problems of $S(t)-ES(t)=\sum_{i=1}^{N(t)}(X_i-EX_i)$, $t\ge 0$ for non-negative and inter-value random process $N(t)$ such that Assumption A, independent of $\{\eta_n\}_{n=-\infty}^{\infty}$. We show that if the steps of random walk are not independent, then precise large deviation result of random sums may be different from the case with $iid$ steps, which means that dependence affects the tails of compound processes $\{S(t)\}_{t \ge 0}$.
Key words: Class $ERV$ Dependent, Heavy-tailed Distribution, Random Walk, Precise Large Deviation, Tail Balance Condition, Two-sided linear process.
Received: 17.04.2002
Document Type: Article
UDC: 517.977
MSC: Primary 60F10; Secondary 60G70
Language: English
Citation: Dingcheng Wang, Chun Su, Zhishui Hu, “Precise large deviation for random sums of random walks with dependent heavy-tailed steps”, Dal'nevost. Mat. Zh., 3:1 (2002), 34–51
Citation in format AMSBIB
\Bibitem{WanSuHu02}
\by Dingcheng Wang, Chun Su, Zhishui Hu
\paper Precise large deviation for random sums of random walks with dependent heavy-tailed steps
\jour Dal'nevost. Mat. Zh.
\yr 2002
\vol 3
\issue 1
\pages 34--51
\mathnet{http://mi.mathnet.ru/dvmg114}
Linking options:
  • https://www.mathnet.ru/eng/dvmg114
  • https://www.mathnet.ru/eng/dvmg/v3/i1/p34
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дальневосточный математический журнал
    Statistics & downloads:
    Abstract page:220
    Full-text PDF :61
    References:36
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024