Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2007, Volume 19, Issue 4, Pages 3–22
DOI: https://doi.org/10.4213/dm974
(Mi dm974)
 

This article is cited in 1 scientific paper (total in 1 paper)

A multivariate Poisson theorem for the number of solutions close to given vectors of a system of random linear equations

V. A. Kopyttsev
Full-text PDF (171 kB) Citations (1)
References:
Abstract: We consider the number $(\xi(A,b\mid z)$ of solutions of a system of random linear equations $Ax=b$ over a finite field $K$ which belong to the set $X_r(z)$ of the vectors differing from a given vector $z$ in a given number $r$ of coordinates (or in at most a given number of coordinates). We give conditions under which, as the number of unknowns, the number of equations, and the number of noncoinciding coordinates tend to infinity, the limit distribution of the vector $(\xi(A,b\mid z^{(1)}),\dots,\xi(A,b\mid z^{(k)}))$ (or of the vector obtained from this vector by normalisation or by shifting some components by one) is the $k$-variate Poisson law. As corollaries we get limit distributions of the variable $(\xi(A,b\mid z^{(1)},\dots,z^{(k)}))$ equal to the number of solutions of the system belonging to the union of the sets $X_r(z^{(s)})$, $s=1,\dots,k$. This research continues a series of the author's and V. G. Mikhailov's studies.
Received: 01.09.2006
Revised: 21.11.2006
English version:
Discrete Mathematics and Applications, 2007, Volume 17, Issue 6, Pages 567–586
DOI: https://doi.org/10.1515/dma.2007.043
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: V. A. Kopyttsev, “A multivariate Poisson theorem for the number of solutions close to given vectors of a system of random linear equations”, Diskr. Mat., 19:4 (2007), 3–22; Discrete Math. Appl., 17:6 (2007), 567–586
Citation in format AMSBIB
\Bibitem{Kop07}
\by V.~A.~Kopyttsev
\paper A multivariate Poisson theorem for the number of solutions close to given vectors of a~system of random linear equations
\jour Diskr. Mat.
\yr 2007
\vol 19
\issue 4
\pages 3--22
\mathnet{http://mi.mathnet.ru/dm974}
\crossref{https://doi.org/10.4213/dm974}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2392693}
\zmath{https://zbmath.org/?q=an:05233564}
\elib{https://elibrary.ru/item.asp?id=9917185}
\transl
\jour Discrete Math. Appl.
\yr 2007
\vol 17
\issue 6
\pages 567--586
\crossref{https://doi.org/10.1515/dma.2007.043}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-37049023498}
Linking options:
  • https://www.mathnet.ru/eng/dm974
  • https://doi.org/10.4213/dm974
  • https://www.mathnet.ru/eng/dm/v19/i4/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024