Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2005, Volume 17, Issue 2, Pages 49–55
DOI: https://doi.org/10.4213/dm97
(Mi dm97)
 

This article is cited in 3 scientific papers (total in 3 papers)

Random sequences of the form $X_{t+1}=a_t X_t+b_t$ modulo $n$ with dependent coefficients $a_t$, $b_t$

I. A. Kruglov
Full-text PDF (445 kB) Citations (3)
References:
Abstract: In this paper, we prove inequalities for the mean square deviation $\delta_{N,n}$ of the $N$ step transition matrix from the equiprobable matrix for certain random affine walk in the residue ring modulo $n$ with dependent linear and drift components.
It is proved that the relation
$$ \lim_{n\to \infty} \delta_{N,n}=0 $$
is true if and only if $N/n^2\to \infty$ as $n\to\infty$. Under this condition,
$$ \delta^2_{N,n}\sim \varepsilon_n \exp\{-\pi^2 N/l_n^2\}, $$
as $n\to\infty, $ where $\varepsilon_n=2$ if $n$ is even and $\varepsilon_n=1$ if $n$ is odd, $l_n=n/2$ if $n$ is even and $l_n=n$ if $n$ is odd.
This research was supported by the program of the President of Russian Federation for support of leading scientific schools, grant 2358.2003.9.
Received: 15.12.2004
English version:
Discrete Mathematics and Applications, 2005, Volume 15, Issue 2, Pages 145–151
DOI: https://doi.org/10.1515/1569392053971433
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: I. A. Kruglov, “Random sequences of the form $X_{t+1}=a_t X_t+b_t$ modulo $n$ with dependent coefficients $a_t$, $b_t$”, Diskr. Mat., 17:2 (2005), 49–55; Discrete Math. Appl., 15:2 (2005), 145–151
Citation in format AMSBIB
\Bibitem{Kru05}
\by I.~A.~Kruglov
\paper Random sequences of the form
$X_{t+1}=a_t X_t+b_t$ modulo $n$ with dependent coefficients $a_t$, $b_t$
\jour Diskr. Mat.
\yr 2005
\vol 17
\issue 2
\pages 49--55
\mathnet{http://mi.mathnet.ru/dm97}
\crossref{https://doi.org/10.4213/dm97}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2167799}
\zmath{https://zbmath.org/?q=an:1106.60059}
\elib{https://elibrary.ru/item.asp?id=9135422}
\transl
\jour Discrete Math. Appl.
\yr 2005
\vol 15
\issue 2
\pages 145--151
\crossref{https://doi.org/10.1515/1569392053971433}
Linking options:
  • https://www.mathnet.ru/eng/dm97
  • https://doi.org/10.4213/dm97
  • https://www.mathnet.ru/eng/dm/v17/i2/p49
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:550
    Full-text PDF :256
    References:90
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024