Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2007, Volume 19, Issue 3, Pages 79–83
DOI: https://doi.org/10.4213/dm966
(Mi dm966)
 

This article is cited in 24 scientific papers (total in 24 papers)

A general approach to studying the stability of a Pareto optimal solution of a vector integer linear programming problem

V. A. Emelichev, K. G. Kuz'min
References:
Abstract: We consider a multicriteria integer linear programming problem with a finite set of admissible solutions. With the use of Minkowski–Mahler inequality, we obtain a bound for the domain in the space of parameters of the problem equipped with some norm where the Pareto optimality of the solution is still retained. In the case of a monotone norm, we give a formula for the stability radius of the solution. As a corollary we obtain the formula for the stability radius in the case of the Hölder norm and, in particular, the Chebyshev norm in the space of parameters of a vector criterion.
Received: 26.05.2006
English version:
Discrete Mathematics and Applications, 2007, Volume 17, Issue 4, Pages 349–354
DOI: https://doi.org/10.1515/dma.2007.029
Bibliographic databases:
UDC: 519.8
Language: Russian
Citation: V. A. Emelichev, K. G. Kuz'min, “A general approach to studying the stability of a Pareto optimal solution of a vector integer linear programming problem”, Diskr. Mat., 19:3 (2007), 79–83; Discrete Math. Appl., 17:4 (2007), 349–354
Citation in format AMSBIB
\Bibitem{EmeKuz07}
\by V.~A.~Emelichev, K.~G.~Kuz'min
\paper A general approach to studying the stability of a~Pareto optimal solution of a~vector integer linear programming problem
\jour Diskr. Mat.
\yr 2007
\vol 19
\issue 3
\pages 79--83
\mathnet{http://mi.mathnet.ru/dm966}
\crossref{https://doi.org/10.4213/dm966}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2368782}
\zmath{https://zbmath.org/?q=an:05233550}
\elib{https://elibrary.ru/item.asp?id=9556830}
\transl
\jour Discrete Math. Appl.
\yr 2007
\vol 17
\issue 4
\pages 349--354
\crossref{https://doi.org/10.1515/dma.2007.029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36749085976}
Linking options:
  • https://www.mathnet.ru/eng/dm966
  • https://doi.org/10.4213/dm966
  • https://www.mathnet.ru/eng/dm/v19/i3/p79
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:797
    Full-text PDF :259
    References:66
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024