Abstract:
We study a random graph which can be treated as a model of large-scale data transmission systems, including the Internet. We give conditions for existence of a giant component in such a graph and prove that the limit distribution of the size of this component is normal.
Citation:
Yu. L. Pavlov, “The limit distribution of the size of a giant component in an Internet-type random graph”, Diskr. Mat., 19:3 (2007), 22–34; Discrete Math. Appl., 17:5 (2007), 425–437
\Bibitem{Pav07}
\by Yu.~L.~Pavlov
\paper The limit distribution of the size of a~giant component in an Internet-type random graph
\jour Diskr. Mat.
\yr 2007
\vol 19
\issue 3
\pages 22--34
\mathnet{http://mi.mathnet.ru/dm963}
\crossref{https://doi.org/10.4213/dm963}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2368779}
\zmath{https://zbmath.org/?q=an:05233555}
\elib{https://elibrary.ru/item.asp?id=9556827}
\transl
\jour Discrete Math. Appl.
\yr 2007
\vol 17
\issue 5
\pages 425--437
\crossref{https://doi.org/10.1515/dma.2007.034}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-37049020962}
Linking options:
https://www.mathnet.ru/eng/dm963
https://doi.org/10.4213/dm963
https://www.mathnet.ru/eng/dm/v19/i3/p22
This publication is cited in the following 10 articles:
Yu. L. Pavlov, E. V. Khvorostyanskaya, “On the limit distributions of the degrees of vertices in configuration graphs with a bounded number of edges”, Sb. Math., 207:3 (2016), 400–417
Yu. L. Pavlov, E. V. Feklistova, “On limit behavior of maximum vertex degree in a conditional configuration graph near critical points”, Discrete Math. Appl., 27:4 (2017), 213–222
A. A. Grusho, E. E. Timonina, “Model sluchainykh grafov dlya opisaniya vzaimodeistvii v seti”, Inform. i ee primen., 6:4 (2012), 57–60