Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2005, Volume 17, Issue 2, Pages 19–48
DOI: https://doi.org/10.4213/dm96
(Mi dm96)
 

This article is cited in 4 scientific papers (total in 4 papers)

A power divergence test in the problem of sample homogeneity for a large number of outcomes and trials

A. P. Baranov, Yu. A. Baranov
References:
Abstract: In order to test homogeneity of $r$ independent polynomial schemes with the same number of outcomes $N$ under non-classical conditions where the numbers of trials $n_d$, $d=1,\dots,r$, in each of the schemes and the number of outcomes $N$ tend to infinity, we suggest a statistic $I(\lambda,r)$ which is a multidimensional analogue of the statistic $I(\lambda)$ introduced by T. Read and N. Cressie. We obtain conditions of asymptotic normality of the distributions of the statistics $I(\lambda)$ and $I(\lambda,r)$ for an arbitrary fixed integer $\lambda$, $\lambda\ne 0,-1$, as $N\to\infty$, $n_dN^{-1}\to\infty$, $d=1,\dots,r$. The expressions for the centring and normalising parameters are given in the explicit form for the hypothesis $H_0$ under which the distributions in these $r$ schemes coincide, and for some class of alternatives close to $H_0$.
Received: 20.02.2005
English version:
Discrete Mathematics and Applications, 2005, Volume 15, Issue 3, Pages 211–240
DOI: https://doi.org/10.1515/156939205774464459
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: A. P. Baranov, Yu. A. Baranov, “A power divergence test in the problem of sample homogeneity for a large number of outcomes and trials”, Diskr. Mat., 17:2 (2005), 19–48; Discrete Math. Appl., 15:3 (2005), 211–240
Citation in format AMSBIB
\Bibitem{BarBar05}
\by A.~P.~Baranov, Yu.~A.~Baranov
\paper A power divergence test in the problem of sample homogeneity for a large number of outcomes and trials
\jour Diskr. Mat.
\yr 2005
\vol 17
\issue 2
\pages 19--48
\mathnet{http://mi.mathnet.ru/dm96}
\crossref{https://doi.org/10.4213/dm96}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2167798}
\zmath{https://zbmath.org/?q=an:1097.62035}
\elib{https://elibrary.ru/item.asp?id=9135421}
\transl
\jour Discrete Math. Appl.
\yr 2005
\vol 15
\issue 3
\pages 211--240
\crossref{https://doi.org/10.1515/156939205774464459}
Linking options:
  • https://www.mathnet.ru/eng/dm96
  • https://doi.org/10.4213/dm96
  • https://www.mathnet.ru/eng/dm/v17/i2/p19
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:771
    Full-text PDF :273
    References:80
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024