Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 1989, Volume 1, Issue 1, Pages 60–73 (Mi dm897)  

Decomposable statistics in an inverse occupancy problem

G. I. Ivchenko
Abstract: We consider a process of the sequential equiprobable allocation of particles among $N$ cells. We assume that up to the start of the trials for cell number $j$ a level $\nu_j$, $j=1,\dots,N$, was established, where $\nu_1,\dots,\nu_N$ are independent identically distributed integer random variables. We carry out the trials until the moment when $k$ cells appear for the first time and their contents reach or exceed the corresponding levels. We study the decomposable statistics
$$ L_{N,k}=\sum^N_{j=1}g(\eta_j), $$
where $g$ is some function of an integer argument, and $\eta_j$ is the content of the $j$-th cell at the moment when the observations cease. We present a general method that reduces the problem of studying the random variables $L_{N,k}$ to the study of the sums of conditionally independent random variables. Using this approach we succeed in obtaining a sufficiently complete description of a class of limit distributions of decomposable statistics in a scheme of equiprobable allocation as $N\to\infty$ and under various modes of change in the parameter $k$.
Received: 05.09.1988
Bibliographic databases:
UDC: 519.214
Language: Russian
Citation: G. I. Ivchenko, “Decomposable statistics in an inverse occupancy problem”, Diskr. Mat., 1:1 (1989), 60–73; Discrete Math. Appl., 1:1 (1991), 81–96
Citation in format AMSBIB
\Bibitem{Ivc89}
\by G.~I.~Ivchenko
\paper Decomposable statistics in an inverse occupancy problem
\jour Diskr. Mat.
\yr 1989
\vol 1
\issue 1
\pages 60--73
\mathnet{http://mi.mathnet.ru/dm897}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1072641}
\zmath{https://zbmath.org/?q=an:0723.60012}
\transl
\jour Discrete Math. Appl.
\yr 1991
\vol 1
\issue 1
\pages 81--96
Linking options:
  • https://www.mathnet.ru/eng/dm897
  • https://www.mathnet.ru/eng/dm/v1/i1/p60
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:406
    Full-text PDF :144
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024