Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 1990, Volume 2, Issue 3, Pages 153–157 (Mi dm879)  

Comparisons modulo a prime for the number of $(0,1)$-matrices

E. E. Marenich
Abstract: Let $B$ be a set of $(0,1)$ $n\times n$ matrices such that if $M\in B$ and $M'$ is obtained from $M$ by an arbitrary rearrangement of rows and columns, then $M'\in B$. For prime $p$ we find comparisons modulo $p$ for $|B|$, where $|B|$ is the number of elements in $B$. We consider applications of this result in cases when $B$ is 1) a set of matrices with a permanent equal to $r$, $r\in\mathbb N_0=\{0,1,2,\cdots\}$; 2) a set of matrices with given row and column sums.
Received: 23.06.1989
Bibliographic databases:
UDC: 519.1
Language: Russian
Citation: E. E. Marenich, “Comparisons modulo a prime for the number of $(0,1)$-matrices”, Diskr. Mat., 2:3 (1990), 153–157
Citation in format AMSBIB
\Bibitem{Mar90}
\by E.~E.~Marenich
\paper Comparisons modulo a~prime for the number of $(0,1)$-matrices
\jour Diskr. Mat.
\yr 1990
\vol 2
\issue 3
\pages 153--157
\mathnet{http://mi.mathnet.ru/dm879}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1084078}
\zmath{https://zbmath.org/?q=an:0733.05018}
Linking options:
  • https://www.mathnet.ru/eng/dm879
  • https://www.mathnet.ru/eng/dm/v2/i3/p153
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:276
    Full-text PDF :172
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024