|
This article is cited in 1 scientific paper (total in 1 paper)
Approximation of the moments of arbitrary integer orders of generalized factorial powers
A. P. Baranov, Yu. A. Baranov
Abstract:
For non-negative integer random variables $\xi$,
we consider approximations of the moments
$\boldsymbol{\mathsf E}\xi^m$, where $m$ are integers, including negative integers.
We find estimates of the difference
$$
\boldsymbol{\mathsf E}\xi^m - \sum_{k=0}^s\genfrac{\{}{\}}{0mm}{}m{m-k}\boldsymbol{\mathsf E}\xi^{\underline {m-k}},
$$
where
$\genfrac{\{}{\}}{0mm}{}m{m-k}$ are extensions to all integers $m$
of Stirling numbers of the second kind,
the functions $ x^{\underline m}$ are the generalised factorial powers, and $s$ is a
positive integer.
Received: 20.07.2004
Citation:
A. P. Baranov, Yu. A. Baranov, “Approximation of the moments of arbitrary integer orders of generalized factorial powers”, Diskr. Mat., 17:1 (2005), 50–67; Discrete Math. Appl., 15:2 (2005), 125–143
Linking options:
https://www.mathnet.ru/eng/dm87https://doi.org/10.4213/dm87 https://www.mathnet.ru/eng/dm/v17/i1/p50
|
|