Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2005, Volume 17, Issue 1, Pages 18–21
DOI: https://doi.org/10.4213/dm84
(Mi dm84)
 

This article is cited in 6 scientific papers (total in 6 papers)

Convergence in distribution of random mappings of finite sets to branching processes

B. A. Sevast'yanov
Full-text PDF (294 kB) Citations (6)
References:
Abstract: A countable set $X=\bigcup_{t=0}^\infty X(t)$ is partitioned into pairwise disjoint finite layers $X(t)$, the cardinalities $|X(t)|$ of the sets $X(t)$, $t=0,1,2,\dots$, are finite. Each layer is partitioned into $r$ disjoint sets $X_i(t)$, $i=1,\ldots,r$, so that $X(t)=\bigcup_{i=1}^rX_i(t)$, $N_i(t)=|X_i(t)|$ and $N_i(t)\sim N\theta_i(t)$ as $N\to\infty$. We set $X'=X\setminus X(0)$.
We consider random mappings $y=f(x)$ of the set $X'$ into the set $X$. We assume that for any pairwise unequal $x_i$, $i=1,\ldots,k$, the random variables $y_i=f(x_i)$, $i=1,\ldots,k$, are independent and $f(X(t))\subseteq X(t-1)$, $t=1,2,\dots$ . Let $Y_i(0)\subseteq X_i(0)$ be some fixed subsets and $Y_i(t)=f^{-1}(Y(t-1))\cap X_i(t)$, $t=1,2,\dots$, be the sequence of preimages of $Y_i(0)$ in these random mappings. It is shown that $\mu_i(t,N)=|Y_i(t)|$, $i=1,\ldots, r$, converges in distribution as $N\to\infty$ to a non-homogeneous in time branching process with $r$ types of particles.
This research was supported by the Russian Foundation for Basic Research, grant 02–01–00266, and by the program of the President of Russian Federation for support of leading scientific schools, grant 1758.2003.1.
Received: 06.12.2004
English version:
Discrete Mathematics and Applications, 2005, Volume 15, Issue 2, Pages 105–108
DOI: https://doi.org/10.1515/1569392053971460
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: B. A. Sevast'yanov, “Convergence in distribution of random mappings of finite sets to branching processes”, Diskr. Mat., 17:1 (2005), 18–21; Discrete Math. Appl., 15:2 (2005), 105–108
Citation in format AMSBIB
\Bibitem{Sev05}
\by B.~A.~Sevast'yanov
\paper Convergence in distribution of random mappings of finite sets to branching processes
\jour Diskr. Mat.
\yr 2005
\vol 17
\issue 1
\pages 18--21
\mathnet{http://mi.mathnet.ru/dm84}
\crossref{https://doi.org/10.4213/dm84}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2164520}
\zmath{https://zbmath.org/?q=an:1101.60015}
\elib{https://elibrary.ru/item.asp?id=9135409}
\transl
\jour Discrete Math. Appl.
\yr 2005
\vol 15
\issue 2
\pages 105--108
\crossref{https://doi.org/10.1515/1569392053971460}
Linking options:
  • https://www.mathnet.ru/eng/dm84
  • https://doi.org/10.4213/dm84
  • https://www.mathnet.ru/eng/dm/v17/i1/p18
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:690
    Full-text PDF :258
    References:56
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024