Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 1991, Volume 3, Issue 4, Pages 16–23 (Mi dm815)  

The problem of two periodic tasks

D. S. Gershuni
Abstract: We study existence conditions for an admissible schedule with interruptions on one processor for a system of two tasks $(p_1,d_1,c_1)$ and $(p_2,d_2,c_2)$, in which each of the tasks $i\in\{1,2\}$ becomes ready for the $k$th execution at time $(k-1)p_i$, must be completed before $d_i+(k-1)p_i$ and requires for its execution $c_i$ units of processor time. We present two methods for testing the existence of an admissible schedule, including a polynomial method for the number of binary digits necessary for coding input data, and an algorithm of Euclidean type.
Received: 27.12.1988
Bibliographic databases:
UDC: 519.854.2, 511.2
Language: Russian
Citation: D. S. Gershuni, “The problem of two periodic tasks”, Diskr. Mat., 3:4 (1991), 16–23
Citation in format AMSBIB
\Bibitem{Ger91}
\by D.~S.~Gershuni
\paper The problem of two periodic tasks
\jour Diskr. Mat.
\yr 1991
\vol 3
\issue 4
\pages 16--23
\mathnet{http://mi.mathnet.ru/dm815}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1160233}
\zmath{https://zbmath.org/?q=an:0755.90041}
Linking options:
  • https://www.mathnet.ru/eng/dm815
  • https://www.mathnet.ru/eng/dm/v3/i4/p16
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :86
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024