Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 1991, Volume 3, Issue 2, Pages 58–68 (Mi dm787)  

Vector optimization of decompositions of root trees

A. A. Markov
Abstract: We consider the decompositions of root trees with vector vertex weights. We study a problem on the minimization of the number of the decomposition under a vector constraint. We prove the insolvability of this problem in a class of generalized finite automata over trees containing algorithms of gradient type. We estimate the error of the automaton algorithm, present an algorithm that solves a problem with polynomially bounded time complexity, and obtain an estimate for the number of parts of the decomposition.
Received: 29.05.1990
Bibliographic databases:
UDC: 519.1
Language: Russian
Citation: A. A. Markov, “Vector optimization of decompositions of root trees”, Diskr. Mat., 3:2 (1991), 58–68
Citation in format AMSBIB
\Bibitem{Mar91}
\by A.~A.~Markov
\paper Vector optimization of decompositions of root trees
\jour Diskr. Mat.
\yr 1991
\vol 3
\issue 2
\pages 58--68
\mathnet{http://mi.mathnet.ru/dm787}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1134281}
\zmath{https://zbmath.org/?q=an:0737.05044}
Linking options:
  • https://www.mathnet.ru/eng/dm787
  • https://www.mathnet.ru/eng/dm/v3/i2/p58
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:346
    Full-text PDF :131
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024