Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 1992, Volume 4, Issue 3, Pages 135–148 (Mi dm755)  

This article is cited in 6 scientific papers (total in 6 papers)

On Slupecki classes in the systems $P_k\times\dots\times P_l$

S. S. Marchenkov
Abstract: We describe all $2^m-1$ precomplete Slupecki classes in systems of the form $P_{k_1}\times \dots\times P_{k_m}$. We prove that any minimal relation defining a precomplete class in the system $P_{k_1}\times\dots\times P_{k_m}$ is either one-based, or a multibased completely reflexive and completely symmetric relation.
Received: 08.07.1991
Bibliographic databases:
UDC: 519.716
Language: Russian
Citation: S. S. Marchenkov, “On Slupecki classes in the systems $P_k\times\dots\times P_l$”, Diskr. Mat., 4:3 (1992), 135–148; Discrete Math. Appl., 3:2 (1993), 147–160
Citation in format AMSBIB
\Bibitem{Mar92}
\by S.~S.~Marchenkov
\paper On Slupecki classes in the systems $P_k\times\dots\times P_l$
\jour Diskr. Mat.
\yr 1992
\vol 4
\issue 3
\pages 135--148
\mathnet{http://mi.mathnet.ru/dm755}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1220976}
\zmath{https://zbmath.org/?q=an:0802.03018}
\transl
\jour Discrete Math. Appl.
\yr 1993
\vol 3
\issue 2
\pages 147--160
Linking options:
  • https://www.mathnet.ru/eng/dm755
  • https://www.mathnet.ru/eng/dm/v4/i3/p135
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024