Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 1993, Volume 5, Issue 3, Pages 44–63 (Mi dm690)  

The problem of discriminating hypotheses on the parameters of a generalized moving summation process

G. V. Proskurin
Abstract: We consider a random process
$$\chi_t=L(x^1_t, x^1_{t+1},\dots, x^1_{t+n_1-1},\dots, x^r_t,\dots,x^r_{t+n_r-1}),\quad t=1, \dots,T,$$
where $x^i_\tau$, $i=1,\dots,r$, $\tau=1,2,\dots$, are independent, identically distributed random variables, $x^i_\tau\in\{0,1\}$, $P\{x^i_\tau=0\}=(1+\theta)/2$, $L$ is a linear Boolean function. It is proved that the lognormal distribution is the limit distribution of the likelihood ratio statistic for testing a simple hypothesis $\theta=\delta>0$ on the basis of the sample $\chi_t$, $t=1,\dots,T$, against a simple hypothesis $\theta=0$ as $\delta\to0$.
Algorithms for calculating the parameters of the function $L$, which determine the value of $T$ sufficient to distinguish the hypotheses with errors tending to zero, are presented. It is shown that if $r\geqslant 2$, $\sum_{i=1}^r n_i\to\infty$, then the sufficient value of $T$ is no less than $\delta^{2k(L)}$ in order, where $k(L)=O(n/\log n)$ depends on $L$.
Received: 27.10.1992
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: G. V. Proskurin, “The problem of discriminating hypotheses on the parameters of a generalized moving summation process”, Diskr. Mat., 5:3 (1993), 44–63; Discrete Math. Appl., 3:5 (1993), 483–503
Citation in format AMSBIB
\Bibitem{Pro93}
\by G.~V.~Proskurin
\paper The problem of discriminating hypotheses on the parameters of a~generalized moving summation process
\jour Diskr. Mat.
\yr 1993
\vol 5
\issue 3
\pages 44--63
\mathnet{http://mi.mathnet.ru/dm690}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1266257}
\zmath{https://zbmath.org/?q=an:0799.62093}
\transl
\jour Discrete Math. Appl.
\yr 1993
\vol 3
\issue 5
\pages 483--503
Linking options:
  • https://www.mathnet.ru/eng/dm690
  • https://www.mathnet.ru/eng/dm/v5/i3/p44
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024