Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2006, Volume 18, Issue 2, Pages 146–158
DOI: https://doi.org/10.4213/dm54
(Mi dm54)
 

This article is cited in 2 scientific papers (total in 2 papers)

Properties of the lattice of all multiply $\Omega$-canonical formations

Yu. A. Elovikova
References:
Abstract: We study the lattices $\Omega K_{n}$ and $K_{n}$ of all $n$-multiply $\Omega$-canonical and $n$-multiply canonical formations respectively. The main results of the paper are the proofs of $\mathfrak G$-separability of the lattice $\Omega K_n$ and coincidence of the systems of identities of the lattices $K_{n}$ and $K_{m}$ for different positive integers $n$ and $m$.
Received: 17.05.2004
English version:
Discrete Mathematics and Applications, 2006, Volume 16, Issue 3, Pages 307–317
DOI: https://doi.org/10.1515/156939206777970480
Bibliographic databases:
UDC: 512.542
Language: Russian
Citation: Yu. A. Elovikova, “Properties of the lattice of all multiply $\Omega$-canonical formations”, Diskr. Mat., 18:2 (2006), 146–158; Discrete Math. Appl., 16:3 (2006), 307–317
Citation in format AMSBIB
\Bibitem{Elo06}
\by Yu.~A.~Elovikova
\paper Properties of the lattice of all multiply $\Omega$-canonical formations
\jour Diskr. Mat.
\yr 2006
\vol 18
\issue 2
\pages 146--158
\mathnet{http://mi.mathnet.ru/dm54}
\crossref{https://doi.org/10.4213/dm54}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2283339}
\zmath{https://zbmath.org/?q=an:1164.20312}
\elib{https://elibrary.ru/item.asp?id=9311203}
\transl
\jour Discrete Math. Appl.
\yr 2006
\vol 16
\issue 3
\pages 307--317
\crossref{https://doi.org/10.1515/156939206777970480}
Linking options:
  • https://www.mathnet.ru/eng/dm54
  • https://doi.org/10.4213/dm54
  • https://www.mathnet.ru/eng/dm/v18/i2/p146
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024