Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 1996, Volume 8, Issue 1, Pages 41–51
DOI: https://doi.org/10.4213/dm515
(Mi dm515)
 

This article is cited in 7 scientific papers (total in 7 papers)

The numbers of ascending segments in a random permutation and in one inverse to it are asymptotically independent

V. A. Vatutin
Full-text PDF (951 kB) Citations (7)
Abstract: Let $\sigma =\sigma (1)\sigma (2)\ldots\sigma (n)$ be a permutation of the elements of the set $1,2,\ldots,n$, and $D = \{k\colon \sigma ( k ) > \sigma ( k+ 1) \}$ be the descendent set of $\sigma$. Denote by $\des \sigma$ the cardinality of $D$ and set \[ \maj \sigma = \sum_{k\in D} k, \quad \ides \sigma = \des \sigma^{-1}, \quad \imaj \sigma = \maj \sigma^{-1} , \] where $\sigma^{-1}$ is the inverse permutation to $\sigma$. We show that the distribution of the four-dimensional vector $R( n ) = (\des \sigma,\maj \sigma, \ides \sigma, \imaj \sigma)$ is asymptotically normal as $n \to \infty$, and the two first coordinates of $R(n )$ are asymptotically independent from the two last ones.
This work was supported by the Russian Foundation of Basic Research, Grant 93–011–1443.
Received: 09.02.1995
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: V. A. Vatutin, “The numbers of ascending segments in a random permutation and in one inverse to it are asymptotically independent”, Diskr. Mat., 8:1 (1996), 41–51; Discrete Math. Appl., 6:1 (1996), 41–52
Citation in format AMSBIB
\Bibitem{Vat96}
\by V.~A.~Vatutin
\paper The numbers of ascending segments in a random permutation and in one inverse to it are asymptotically independent
\jour Diskr. Mat.
\yr 1996
\vol 8
\issue 1
\pages 41--51
\mathnet{http://mi.mathnet.ru/dm515}
\crossref{https://doi.org/10.4213/dm515}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1388382}
\zmath{https://zbmath.org/?q=an:0847.05002}
\transl
\jour Discrete Math. Appl.
\yr 1996
\vol 6
\issue 1
\pages 41--52
Linking options:
  • https://www.mathnet.ru/eng/dm515
  • https://doi.org/10.4213/dm515
  • https://www.mathnet.ru/eng/dm/v8/i1/p41
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:478
    Full-text PDF :256
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024