Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 1996, Volume 8, Issue 1, Pages 72–85
DOI: https://doi.org/10.4213/dm509
(Mi dm509)
 

This article is cited in 5 scientific papers (total in 5 papers)

On the complexity of the problem of determining the number of solutions of systems of Boolean equations

S. P. Gorshkov
Abstract: We consider classes of systems of Boolean equations of the form \[ f_{s_i}(x_{s_{i1}},\ldots,x_{s_{ik_{i}}}) = 1,\qquad i = 1,\ldots,m, \] where $m \in \{ 1,2,\ldots\}$, $x_{s_{ij}} \in \{ x_{1},x_{2},\ldots\}$, $j = 1,\ldots,k_{i}$, $i = 1,\ldots,m$, the functions ${f}_{s_{i}}$ are taken from a set of Boolean functions $F = \{ f_{j}(x_{1},\ldots,x_{k_j}\mid j\in J \}$. The problem of finding the number of solutions of a system of equations from this class is denoted by $\enu([F]_{\NC})$, and the set of all Boolean functions, which can be represented as a conjunction of affine functions is denoted by $A$. It is proved that if $F \subseteq A$, then the problem $\enu([F]_{\NC})$ is polynomial, if $F \mathrel{\scriptstyle\nsubseteq} A$, then the problem $\enu([F]_{\NC})$ is $\NP$-complete (intractable).
Received: 09.09.1993
Bibliographic databases:
UDC: 519.7
Language: Russian
Citation: S. P. Gorshkov, “On the complexity of the problem of determining the number of solutions of systems of Boolean equations”, Diskr. Mat., 8:1 (1996), 72–85; Discrete Math. Appl., 6:1 (1996), 77–92
Citation in format AMSBIB
\Bibitem{Gor96}
\by S.~P.~Gorshkov
\paper On the complexity of the problem of determining the number of solutions of systems of Boolean equations
\jour Diskr. Mat.
\yr 1996
\vol 8
\issue 1
\pages 72--85
\mathnet{http://mi.mathnet.ru/dm509}
\crossref{https://doi.org/10.4213/dm509}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1388385}
\zmath{https://zbmath.org/?q=an:0869.94052}
\transl
\jour Discrete Math. Appl.
\yr 1996
\vol 6
\issue 1
\pages 77--92
Linking options:
  • https://www.mathnet.ru/eng/dm509
  • https://doi.org/10.4213/dm509
  • https://www.mathnet.ru/eng/dm/v8/i1/p72
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:676
    Full-text PDF :439
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024