Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 1997, Volume 9, Issue 4, Pages 86–91
DOI: https://doi.org/10.4213/dm506
(Mi dm506)
 

This article is cited in 4 scientific papers (total in 4 papers)

The total vertex separation number of a graph

P. A. Golovach
Full-text PDF (619 kB) Citations (4)
Abstract: For a graph $G$ we introduce a new graph invariant $\operatorname{sv}(G)$ which we name the total vertex separation number. We demonstrate that the recognition problem consisting in checking whether or not $\operatorname{sv}(G)\le k$ for a given $G$ and a non-negative integer $k$ is NP-complete even for edge graphs. We consider the problem to calculate this invariant for the interval graphs. In addition, the total vertex separation number of a tree is considered.
This research was supported by the program ‘Universities of Russia’.
Received: 25.05.1994
Bibliographic databases:
UDC: 519.717
Language: Russian
Citation: P. A. Golovach, “The total vertex separation number of a graph”, Diskr. Mat., 9:4 (1997), 86–91; Discrete Math. Appl., 7:6 (1997), 631–636
Citation in format AMSBIB
\Bibitem{Gol97}
\by P.~A.~Golovach
\paper The total vertex separation number of a graph
\jour Diskr. Mat.
\yr 1997
\vol 9
\issue 4
\pages 86--91
\mathnet{http://mi.mathnet.ru/dm506}
\crossref{https://doi.org/10.4213/dm506}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1629604}
\zmath{https://zbmath.org/?q=an:0965.05059}
\transl
\jour Discrete Math. Appl.
\yr 1997
\vol 7
\issue 6
\pages 631--636
Linking options:
  • https://www.mathnet.ru/eng/dm506
  • https://doi.org/10.4213/dm506
  • https://www.mathnet.ru/eng/dm/v9/i4/p86
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:437
    Full-text PDF :218
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024