|
On domains completely specifying Boolean functions
A. V. Chashkin
Abstract:
It is shown that for an arbitrary Boolean function $f\colon\{0,1\}^n\to\{0,1\}$ with complexity
$L(f)\le2^{n-5}/n$ there exist four domains $D_1,D_2,D_3,D_4\subseteq\{0,1\}^n$
such that $f$ is completely specified by its values on these domains.
If $L(f)=o(2^n)$ for $i\in\{1,\dots,4\}$, then $D_i=o(2^n)$.
Citation:
A. V. Chashkin, “On domains completely specifying Boolean functions”, Diskr. Mat., 9:4 (1997), 21–23; Discrete Math. Appl., 7:5 (1997), 465–468
Linking options:
https://www.mathnet.ru/eng/dm492https://doi.org/10.4213/dm492 https://www.mathnet.ru/eng/dm/v9/i4/p21
|
Statistics & downloads: |
Abstract page: | 308 | Full-text PDF : | 197 | First page: | 1 |
|