Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 1997, Volume 9, Issue 4, Pages 21–23
DOI: https://doi.org/10.4213/dm492
(Mi dm492)
 

On domains completely specifying Boolean functions

A. V. Chashkin
Abstract: It is shown that for an arbitrary Boolean function $f\colon\{0,1\}^n\to\{0,1\}$ with complexity $L(f)\le2^{n-5}/n$ there exist four domains $D_1,D_2,D_3,D_4\subseteq\{0,1\}^n$ such that $f$ is completely specified by its values on these domains. If $L(f)=o(2^n)$ for $i\in\{1,\dots,4\}$, then $D_i=o(2^n)$.
Bibliographic databases:
UDC: 519.7
Language: Russian
Citation: A. V. Chashkin, “On domains completely specifying Boolean functions”, Diskr. Mat., 9:4 (1997), 21–23; Discrete Math. Appl., 7:5 (1997), 465–468
Citation in format AMSBIB
\Bibitem{Cha97}
\by A.~V.~Chashkin
\paper On domains completely specifying Boolean functions
\jour Diskr. Mat.
\yr 1997
\vol 9
\issue 4
\pages 21--23
\mathnet{http://mi.mathnet.ru/dm492}
\crossref{https://doi.org/10.4213/dm492}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1629580}
\zmath{https://zbmath.org/?q=an:0964.94033}
\transl
\jour Discrete Math. Appl.
\yr 1997
\vol 7
\issue 5
\pages 465--468
Linking options:
  • https://www.mathnet.ru/eng/dm492
  • https://doi.org/10.4213/dm492
  • https://www.mathnet.ru/eng/dm/v9/i4/p21
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:308
    Full-text PDF :197
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024