Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 1997, Volume 9, Issue 3, Pages 153–160
DOI: https://doi.org/10.4213/dm483
(Mi dm483)
 

This article is cited in 2 scientific papers (total in 2 papers)

Pareto-optimality conditions in discrete vector optimization problems

V. A. Emelichev, O. A. Yanushkevich
Full-text PDF (768 kB) Citations (2)
Abstract: For the vector optimization problem
\begin{gather*} F = (f_1, f_2,\dots, f_n)\colon X\to\mathbf R^n,\qquad n\ge 2, \\ f_i(x)\to \min_X\qquad \forall\,i\in N_n=\{1, 2,\dots,n\}, \end{gather*}
with a finite set of vector estimators $F(X)$ we give a wide class of efficiency (Pareto-optimality) criteria in terms of linear convolutions of transformed partial criteria. In particular, it is proved that an element $x^o\in X$ is efficient if and only if there exists a vector $(\lambda_1,\lambda_2,\dots,\lambda_n)$, $\lambda_i>0$, $i\in N_n$, such that
$$ \sum_{i\in N_n}\lambda_i\alpha^{f_i(x^o)} \le\sum_{i \in N_n}\lambda_i\alpha^{f_i(x)}\qquad \forall\,x \in X, $$
where $\alpha=n^{1/\Delta}$, $\Delta=\min\{f_i(x)-f_i(x') >0\colon x, x' \in X,\ i \in N_n\}$.
This research was supported by the Foundation for Basic Research of Republic Byelarus (grants F95–70 and MP96–35), and the DAAD and the International Soros Educational Program in Exact Sciences (grant ‘Soros Professor’ for the first of the authors).
Received: 23.09.1996
Bibliographic databases:
UDC: 519.6
Language: Russian
Citation: V. A. Emelichev, O. A. Yanushkevich, “Pareto-optimality conditions in discrete vector optimization problems”, Diskr. Mat., 9:3 (1997), 153–160; Discrete Math. Appl., 7:4 (1997), 345–352
Citation in format AMSBIB
\Bibitem{EmeYan97}
\by V.~A.~Emelichev, O.~A.~Yanushkevich
\paper Pareto-optimality conditions in discrete vector optimization problems
\jour Diskr. Mat.
\yr 1997
\vol 9
\issue 3
\pages 153--160
\mathnet{http://mi.mathnet.ru/dm483}
\crossref{https://doi.org/10.4213/dm483}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1485656}
\zmath{https://zbmath.org/?q=an:0966.90065}
\transl
\jour Discrete Math. Appl.
\yr 1997
\vol 7
\issue 4
\pages 345--352
Linking options:
  • https://www.mathnet.ru/eng/dm483
  • https://doi.org/10.4213/dm483
  • https://www.mathnet.ru/eng/dm/v9/i3/p153
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:972
    Full-text PDF :505
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024