Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2006, Volume 18, Issue 2, Pages 71–83
DOI: https://doi.org/10.4213/dm47
(Mi dm47)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the mean complexity of monotone functions

R. N. Zabaluev
References:
Abstract: We consider the complexity of realisation of the monotone functions by straight-line programs with conditional stop. It is shown that the mean complexity of each monotone function of $n$ variables does not exceed $a{2^n}/{n^{2}}(1+o(1))$ as $n\to\infty$, and the mean complexity of almost all monotone functions of $n$ variables is at least $b{2^n}/{n^{2}}(1+o(1))$ as $n\to\infty$, where $a$ and $b$ are constants.
This research was supported by the Russian Foundation for Basic Research, grant 05–01–0099, by the Program of the President of the Russian Federation for support of leading scientific schools, grant 1807.2003.1, by the Program ‘Universities of Russia,’ grant 04.02.528, and by the Program of Fundamental Research of the Department of Mathematical Sciences of the Russian Academy of Sciences ‘Algebraic and Combinatorial Methods of Mathematical Cybernetics,’ project ‘Optimal synthesis of control circuits.’
Received: 12.05.2005
English version:
Discrete Mathematics and Applications, 2006, Volume 16, Issue 2, Pages 181–194
DOI: https://doi.org/10.1515/156939206777344629
Bibliographic databases:
UDC: 519.7
Language: Russian
Citation: R. N. Zabaluev, “On the mean complexity of monotone functions”, Diskr. Mat., 18:2 (2006), 71–83; Discrete Math. Appl., 16:2 (2006), 181–194
Citation in format AMSBIB
\Bibitem{Zab06}
\by R.~N.~Zabaluev
\paper On the mean complexity of monotone functions
\jour Diskr. Mat.
\yr 2006
\vol 18
\issue 2
\pages 71--83
\mathnet{http://mi.mathnet.ru/dm47}
\crossref{https://doi.org/10.4213/dm47}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2283332}
\zmath{https://zbmath.org/?q=an:1145.94029}
\elib{https://elibrary.ru/item.asp?id=9311196}
\transl
\jour Discrete Math. Appl.
\yr 2006
\vol 16
\issue 2
\pages 181--194
\crossref{https://doi.org/10.1515/156939206777344629}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746055746}
Linking options:
  • https://www.mathnet.ru/eng/dm47
  • https://doi.org/10.4213/dm47
  • https://www.mathnet.ru/eng/dm/v18/i2/p71
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:553
    Full-text PDF :285
    References:48
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024