Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2006, Volume 18, Issue 2, Pages 29–47
DOI: https://doi.org/10.4213/dm44
(Mi dm44)
 

This article is cited in 30 scientific papers (total in 30 papers)

On large deviations of branching processes in a random environment: a geometric distribution of the number of descendants

M. V. Kozlov
References:
Abstract: A branching process $Z_n$ with geometric distribution of descendants in a random environment represented by a sequence of independent identically distributed random variables (the Smith–Wilkinson model) is considered. The asymptotics of large deviation probabilities $\boldsymbol{\mathsf P}(\ln Z_n>\theta n)$, $\theta>0$, are found provided that the steps of the accompanying random walk $S_n$ satisfy the Cramér condition. In the cases of supercritical, critical, moderate, and intermediate subcritical processes the asymptotics follow that of the large deviations probabilities $\boldsymbol{\mathsf P}(S_n\le\theta n)$. In strongly subcritical case the same asymptotics hold for $\theta$ greater than some $\theta^*$ (for $\theta\le\theta^*$ the asymptotics of large deviation probabilities are different).
This research was supported by the Russian Foundation for Basic Research, grant 04–01–00700, and by DFG, project 436 RUS 113/722.
Received: 02.11.2004
Revised: 07.04.2006
English version:
Discrete Mathematics and Applications, 2006, Volume 16, Issue 2, Pages 155–174
DOI: https://doi.org/10.1515/156939206777344593
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: M. V. Kozlov, “On large deviations of branching processes in a random environment: a geometric distribution of the number of descendants”, Diskr. Mat., 18:2 (2006), 29–47; Discrete Math. Appl., 16:2 (2006), 155–174
Citation in format AMSBIB
\Bibitem{Koz06}
\by M.~V.~Kozlov
\paper On large deviations of branching processes in a random environment: a geometric distribution of the number of descendants
\jour Diskr. Mat.
\yr 2006
\vol 18
\issue 2
\pages 29--47
\mathnet{http://mi.mathnet.ru/dm44}
\crossref{https://doi.org/10.4213/dm44}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2283329}
\zmath{https://zbmath.org/?q=an:1126.60089}
\elib{https://elibrary.ru/item.asp?id=9311193}
\transl
\jour Discrete Math. Appl.
\yr 2006
\vol 16
\issue 2
\pages 155--174
\crossref{https://doi.org/10.1515/156939206777344593}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746103721}
Linking options:
  • https://www.mathnet.ru/eng/dm44
  • https://doi.org/10.4213/dm44
  • https://www.mathnet.ru/eng/dm/v18/i2/p29
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:919
    Full-text PDF :372
    References:99
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024