Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 1998, Volume 10, Issue 3, Pages 35–56
DOI: https://doi.org/10.4213/dm433
(Mi dm433)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the asymptotics of the logarithm of the number of threshold functions of $K$-valued logic

A. A. Irmatov, Ž. D. Kovijanić
Abstract: For the number $P(K,n)$ of threshold $n$-ary functions of $K$-valued logic, we obtain the lower bound
$$ P(K,n+1)\geq \frac{1}{2}\binom{K^{n}}{\lfloor n-4- 2n/\log_K n\rfloor} P(K,\lfloor 2n/\log_K n+4\rfloor). $$
The key argument in our investigation is the generalization of a result obtained by Odlyzko on the subspaces spanned by $p$ randomly chosen $(\pm1)$-vectors. Namely, we prove that, as $n\to\infty$, for any
$$ p\leq n-(3+\log_{2Q}36)n/\log_{2Q}{n} $$
if $K=2Q$, respectively, for any
$$ p\leq n-(3+\log_{2Q+1}36)n/\log_{2Q+1}{n} $$
if $K=2Q+1$, the probability that the linear span of $p$ randomly chosen vectors
$$ v_{1},v_{2},\ldots,v_{p}\in (E_K')^n=\{\pm 1, \pm 3,\ldots ,\pm(2Q-1)\}^n, $$
respectively, from $E_K^n=\{0,\pm 1,\ldots,\pm Q\}^n$, contains at least one vector from
$$ (E_K')^n \setminus \bigcup_{i=1}^p \langle v_i\rangle, $$
respectively, from
$$ E_K^n \setminus \bigcup_{i=1}^p \langle v_i\rangle, $$
equals, for even $K=2Q$, $Q\ne 1$,
$$ 4\binom p3\biggl(\frac{2}{3}+ \frac{1}{12Q^2}\biggr)^n + O\biggl(p^{3}\biggl(\frac{2}{3}+\frac{Q-3}{12Q^3}\biggr)^{n}\biggr), $$
and for $Q=1$,
$$ 4\binom p3\biggl(\frac{3}{4}\biggr)^n+ O\biggl(p^4 \biggl(\frac{5}{8}\biggr)^n\biggr), $$
and, respectively, for odd $K=2Q+1$, $Q\ne 1$,
$$ 2\binom p2\biggl(\frac{3}{4}+\frac{1}{4(2Q+1)^2}\biggr)^n+ O\biggl(p^2 \biggl(\frac{3}{4}-\frac{7}{4(2Q+1)^2}\biggr)^n\biggr), $$
and for $Q=1$,
$$ 2\binom p2\biggl(\frac{7}{9}\biggr)^n+ O\biggl(p^3 \biggl(\frac{17}{27}\biggr)^n\biggr). $$

The research of the first author was supported by the Ministry of Science of the Russian Federation, project ‘Prospective Information Technologies’ №0201{.}05{.}028.
Received: 22.06.1998
Bibliographic databases:
UDC: 519.7
Language: Russian
Citation: A. A. Irmatov, Ž. D. Kovijanić, “On the asymptotics of the logarithm of the number of threshold functions of $K$-valued logic”, Diskr. Mat., 10:3 (1998), 35–56; Discrete Math. Appl., 8:4 (1998), 331–355
Citation in format AMSBIB
\Bibitem{IrmKov98}
\by A.~A.~Irmatov, {\v Z}.~D.~Kovijani{\'c}
\paper On the asymptotics of the logarithm of the number of threshold functions of $K$-valued logic
\jour Diskr. Mat.
\yr 1998
\vol 10
\issue 3
\pages 35--56
\mathnet{http://mi.mathnet.ru/dm433}
\crossref{https://doi.org/10.4213/dm433}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1673658}
\zmath{https://zbmath.org/?q=an:0964.03023}
\transl
\jour Discrete Math. Appl.
\yr 1998
\vol 8
\issue 4
\pages 331--355
Linking options:
  • https://www.mathnet.ru/eng/dm433
  • https://doi.org/10.4213/dm433
  • https://www.mathnet.ru/eng/dm/v10/i3/p35
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024