Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 1998, Volume 10, Issue 1, Pages 28–45
DOI: https://doi.org/10.4213/dm417
(Mi dm417)
 

This article is cited in 1 scientific paper (total in 1 paper)

Transitivity-preserving operators on relations

L. A. Sholomov
Abstract: Let $\mathcal T=\mathcal T(A)$ be the class of all transitive relations on a finite set $A$. We say that an operator $r=F(r_1,\ldots, r_n)$ on the set of relations preserves transitivity if
$$ r_1,\ldots,r_n\in\mathcal T\quad \Rightarrow\quad r\in\mathcal T. $$
Let us introduce operators $\tau_n^{(u)}(r_1,\ldots,r_n)$, $u=0,1$, $n\geq 0$, by setting $\tau_0^{(0)}=\emptyset$, $\tau_0^{(1)}=A^2$,
$$ \tau_n^{(u)}=r_1\cap(\overline{(r_1^{-1})}\cup \tau_{n-1}^{(u)}(r_2,\ldots,r_n)), \qquad n\geq 1. $$
Any operator derived from $\tau_n^{(u)}$ by replacing some of $r_i$, $1\leq i\leq n,$ with $r_i^{-1}$ is called a $\tau$-operator. It is shown that an operator $F$ representable by means of set-theoretic operations and inversion of relations preserves transitivity if and only if it is representable as an intersection of $\tau$-operators.
Received: 05.01.1995
Bibliographic databases:
UDC: 519.816
Language: Russian
Citation: L. A. Sholomov, “Transitivity-preserving operators on relations”, Diskr. Mat., 10:1 (1998), 28–45; Discrete Math. Appl., 8:2 (1998), 183–200
Citation in format AMSBIB
\Bibitem{Sho98}
\by L.~A.~Sholomov
\paper Transitivity-preserving operators on relations
\jour Diskr. Mat.
\yr 1998
\vol 10
\issue 1
\pages 28--45
\mathnet{http://mi.mathnet.ru/dm417}
\crossref{https://doi.org/10.4213/dm417}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1669079}
\zmath{https://zbmath.org/?q=an:0965.03060}
\transl
\jour Discrete Math. Appl.
\yr 1998
\vol 8
\issue 2
\pages 183--200
Linking options:
  • https://www.mathnet.ru/eng/dm417
  • https://doi.org/10.4213/dm417
  • https://www.mathnet.ru/eng/dm/v10/i1/p28
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:440
    Full-text PDF :238
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024