Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 1998, Volume 10, Issue 1, Pages 10–19
DOI: https://doi.org/10.4213/dm413
(Mi dm413)
 

This article is cited in 3 scientific papers (total in 3 papers)

The number of $q$-ary words with restrictions on the length of a maximal series

A. V. Kostochka, V. D. Mazurov, L. Ja. Savel'ev
Full-text PDF (769 kB) Citations (3)
Abstract: It is proved that the number $g(q,s,n)$ of words of length $n$ over a $q$-letter alphabet such that the length of any subword consisting of one and the same letter is no greater than $s$ is very close to $\lambda^n$, where $\lambda$ is the greatest real root of the polynomial $x^{s+1}-qx^s+q-1$. A representation of $\lambda$ in the form of a series is found. The results obtained let us calculate asymptotical values of $g(q,s,n)$ and the function $h(q,s,n)=g(q,s,n)-g(q,s-1,n)$ as $n\to\infty$ for $s>c \log n$, where $c$ is an arbitrary positive constant.
The research was supported by the Russian Foundation for Basic Research, grants 96–01–01614, 96–01–01893, and 96–01–01496, respectively, for each of the authors.
Received: 04.02.1998
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: A. V. Kostochka, V. D. Mazurov, L. Ja. Savel'ev, “The number of $q$-ary words with restrictions on the length of a maximal series”, Diskr. Mat., 10:1 (1998), 10–19; Discrete Math. Appl., 8:2 (1998), 109–118
Citation in format AMSBIB
\Bibitem{KosMazSav98}
\by A.~V.~Kostochka, V.~D.~Mazurov, L.~Ja.~Savel'ev
\paper The number of $q$-ary words with restrictions on the length of a maximal series
\jour Diskr. Mat.
\yr 1998
\vol 10
\issue 1
\pages 10--19
\mathnet{http://mi.mathnet.ru/dm413}
\crossref{https://doi.org/10.4213/dm413}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1669008}
\zmath{https://zbmath.org/?q=an:0966.68166}
\transl
\jour Discrete Math. Appl.
\yr 1998
\vol 8
\issue 2
\pages 109--118
Linking options:
  • https://www.mathnet.ru/eng/dm413
  • https://doi.org/10.4213/dm413
  • https://www.mathnet.ru/eng/dm/v10/i1/p10
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024