Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2007, Volume 19, Issue 1, Pages 17–26
DOI: https://doi.org/10.4213/dm4
(Mi dm4)
 

This article is cited in 8 scientific papers (total in 8 papers)

Limit theorems for the number of solutions of a system of random linear equations belonging to a given set

V. G. Mikhailov
Full-text PDF (127 kB) Citations (8)
References:
Abstract: We investigate the asymptotic behaviour of the distribution of the number $\xi(B)$ of the solutions of a system of homogeneous random linear equations $Ax=0$ (the $T\times n$ matrix $A$ is composed of independent random variables $a_{i,j}$ uniformly distributed on a set of elements of a finite field $K$) which belong to some given set $B$ of non-zero $n$-dimensional vectors over the field $K$. We consider the case where, under a concordant growth of the parameters $n,T\to\infty$ and variations of the sets $B_1,\dots,B_s$ such that the mean values converge to finite limits, the limit distribution of the vector $(\xi(B_1),\dots,\xi(B_s))$ is an $s$-dimensional compound Poisson distribution. We give sufficient conditions for this convergence and find parameters of the limit distribution. We consider in detail the special case where $B_k$ is the set of vectors which do not contain a certain element $k\in K$.
Received: 27.12.2005
English version:
Discrete Mathematics and Applications, 2007, Volume 17, Issue 1, Pages 13–22
DOI: https://doi.org/10.1515/DMA.2007.003
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: V. G. Mikhailov, “Limit theorems for the number of solutions of a system of random linear equations belonging to a given set”, Diskr. Mat., 19:1 (2007), 17–26; Discrete Math. Appl., 17:1 (2007), 13–22
Citation in format AMSBIB
\Bibitem{Mik07}
\by V.~G.~Mikhailov
\paper Limit theorems for the number of solutions of a~system of random linear equations belonging to a~given set
\jour Diskr. Mat.
\yr 2007
\vol 19
\issue 1
\pages 17--26
\mathnet{http://mi.mathnet.ru/dm4}
\crossref{https://doi.org/10.4213/dm4}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2325900}
\zmath{https://zbmath.org/?q=an:05233524}
\elib{https://elibrary.ru/item.asp?id=9468383}
\transl
\jour Discrete Math. Appl.
\yr 2007
\vol 17
\issue 1
\pages 13--22
\crossref{https://doi.org/10.1515/DMA.2007.003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248165930}
Linking options:
  • https://www.mathnet.ru/eng/dm4
  • https://doi.org/10.4213/dm4
  • https://www.mathnet.ru/eng/dm/v19/i1/p17
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:591
    Full-text PDF :228
    References:45
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024