Abstract:
We investigate the asymptotic behaviour of the distribution of the number ξ(B) of the solutions of a system of homogeneous random linear equations Ax=0 (the T×n matrix A is composed of independent random variables ai,j uniformly distributed on a set of elements of a finite field K) which belong to some given set B of non-zero n-dimensional vectors over the field K. We consider the case where, under a concordant growth of the parameters n,T→∞ and variations of the sets B1,…,Bs such that the mean values converge to finite limits, the limit distribution of the vector (ξ(B1),…,ξ(Bs)) is an s-dimensional compound Poisson distribution. We give sufficient conditions for this convergence and find parameters of the limit distribution. We consider in detail the special case where Bk is the set of vectors which do not contain a certain element k∈K.
Citation:
V. G. Mikhailov, “Limit theorems for the number of solutions of a system of random linear equations belonging to a given set”, Diskr. Mat., 19:1 (2007), 17–26; Discrete Math. Appl., 17:1 (2007), 13–22
\Bibitem{Mik07}
\by V.~G.~Mikhailov
\paper Limit theorems for the number of solutions of a~system of random linear equations belonging to a~given set
\jour Diskr. Mat.
\yr 2007
\vol 19
\issue 1
\pages 17--26
\mathnet{http://mi.mathnet.ru/dm4}
\crossref{https://doi.org/10.4213/dm4}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2325900}
\zmath{https://zbmath.org/?q=an:05233524}
\elib{https://elibrary.ru/item.asp?id=9468383}
\transl
\jour Discrete Math. Appl.
\yr 2007
\vol 17
\issue 1
\pages 13--22
\crossref{https://doi.org/10.1515/DMA.2007.003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248165930}
Linking options:
https://www.mathnet.ru/eng/dm4
https://doi.org/10.4213/dm4
https://www.mathnet.ru/eng/dm/v19/i1/p17
This publication is cited in the following 8 articles:
V. G. Mikhailov, “Formulas for a characteristic of spheres and balls in binary high-dimensional spaces”, Discrete Math. Appl., 29:5 (2019), 311–319
A. M. Zubkov, V. I. Kruglov, “Statisticheskie kharakteristiki vesovykh spektrov sluchainykh lineinykh kodov nad GF(p)”, Matem. vopr. kriptogr., 5:1 (2014), 27–38
V. A. Kopyttsev, V. G. Mikhailov, “Ob odnom asimptoticheskom svoistve sfer v diskretnykh prostranstvakh bolshoi razmernosti”, Matem. vopr. kriptogr., 5:1 (2014), 73–83
A. M. Zubkov, V. I. Kruglov, “Veroyatnostnye kharakteristiki vesovykh spektrov sluchainykh lineinykh podkodov nad GF(p)”, PDM. Prilozhenie, 2014, no. 7, 118–121
V. A. Kopyttsev, V. G. Mikhailov, “Poisson-type limit theorems for the generalised linear inclusion”, Discrete Math. Appl., 22:4 (2012), 477–491
V. A. Kopyttsev, V. G. Mikhailov, “O raspredelenii chisel reshenii sluchainykh vklyuchenii”, Matem. vopr. kriptogr., 2:2 (2011), 55–80
V. A. Kopyttsev, V. G. Mikhailov, “Poisson-type theorems for the number of special solutions of a random linear inclusion”, Discrete Math. Appl., 20:2 (2010), 191–211
V. A. Kopyttsev, V. G. Mikhailov, “Teoremy puassonovskogo tipa dlya chisla reshenii sluchainykh vklyuchenii”, Matem. vopr. kriptogr., 1:4 (2010), 63–84