Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 1999, Volume 11, Issue 3, Pages 15–23
DOI: https://doi.org/10.4213/dm382
(Mi dm382)
 

This article is cited in 2 scientific papers (total in 2 papers)

Threshold property for systems of equations in finite fields

V. F. Kolchin
Full-text PDF (753 kB) Citations (2)
Abstract: We consider the system of equations in $\operatorname{GF}(q)$ with respect to unknowns $x_1,\ldots,x_N$
$$ a_1^{(t)}x_{i_1(t)}+\ldots+a_r^{(t)}x_{i_r(t)}=b_t,\qquad t=1,\ldots, T, $$
where $i_1(t),\ldots, i_r(t)$, $t=1,\ldots,T$, are independent identically distributed random variables taking the values $1,\dots, N$ with equal probabilities, the coefficients $a_1^{(t)},\ldots,a_r^{(t)}$, $t=1,\ldots,T$, are independent identically distributed random variables independent of $i_1(t),\ldots,i_r(t)$, $t=1,\ldots,T$, and taking the non-zero values from $\operatorname{GF}(q)$ with equal probabilities, and $b_t$, $t=1,\ldots,T$, are independent random variables not depending on the left-hand side of the system and taking the values from $\operatorname{GF}(q)$ with equal probabilities.
We denote by $A_r$ the matrix of the system. A critical set of rows of $A_r$ is defined in the same way as in the case of $\operatorname{GF}(2)$ but here a critical set contains a number of rows with weights from $\operatorname{GF}(q)$. We prove that the total number $S(A_r)$ of critical sets of the matrix $A_r$ has a threshold property. Let $N,T\to \infty$ and $T/N\to\alpha$. Then for any fixed integers $r\geq 3$ and $q\geq 3$ there exists a constant $\alpha_r$ such that $\mathsf E S(A_r)\to 0$ if $\alpha<\alpha_r$, and $\mathsf E S(A_r)\to\infty$ if $\alpha>\alpha_r$.
The research was supported by the Russian Foundation for Basic Research, grants 96–01–00338 and 96–15–96092.
Received: 20.02.1999
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: V. F. Kolchin, “Threshold property for systems of equations in finite fields”, Diskr. Mat., 11:3 (1999), 15–23; Discrete Math. Appl., 9:4 (1999), 355–364
Citation in format AMSBIB
\Bibitem{Kol99}
\by V.~F.~Kolchin
\paper Threshold property for systems of equations in finite fields
\jour Diskr. Mat.
\yr 1999
\vol 11
\issue 3
\pages 15--23
\mathnet{http://mi.mathnet.ru/dm382}
\crossref{https://doi.org/10.4213/dm382}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1739065}
\zmath{https://zbmath.org/?q=an:0980.60017}
\transl
\jour Discrete Math. Appl.
\yr 1999
\vol 9
\issue 4
\pages 355--364
Linking options:
  • https://www.mathnet.ru/eng/dm382
  • https://doi.org/10.4213/dm382
  • https://www.mathnet.ru/eng/dm/v11/i3/p15
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025