Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2006, Volume 18, Issue 1, Pages 146–155
DOI: https://doi.org/10.4213/dm38
(Mi dm38)
 

This article is cited in 1 scientific paper (total in 1 paper)

Testing numbers of the form $N=2kp^m-1$ for primality

E. V. Sadovnik
Full-text PDF (790 kB) Citations (1)
References:
Abstract: We suggest an algorithm to test numbers of the form $N=2kp^m-1$ for primality, where $2k<p^m$, $k$ is an odd positive integer, $2k<p^m$, $p$ is a prime number, and $p=3\pmod 4$. The algorithm makes use of the Lucas functions. First we present an algorithm to test numbers of the form $N=2k3^m-1$. Then the same technique is used in the more general case where $N=2kp^m-1$. The algorithms suggested here are of complexity $O((\log N)^2 \log\log N \log\log\log N)$.
Received: 14.06.2005
English version:
Discrete Mathematics and Applications, 2006, Volume 16, Issue 2, Pages 99–108
DOI: https://doi.org/10.1515/156939206777344610
Bibliographic databases:
UDC: 511.2
Language: Russian
Citation: E. V. Sadovnik, “Testing numbers of the form $N=2kp^m-1$ for primality”, Diskr. Mat., 18:1 (2006), 146–155; Discrete Math. Appl., 16:2 (2006), 99–108
Citation in format AMSBIB
\Bibitem{Sad06}
\by E.~V.~Sadovnik
\paper Testing numbers of the form $N=2kp^m-1$ for primality
\jour Diskr. Mat.
\yr 2006
\vol 18
\issue 1
\pages 146--155
\mathnet{http://mi.mathnet.ru/dm38}
\crossref{https://doi.org/10.4213/dm38}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2254741}
\zmath{https://zbmath.org/?q=an:1126.11071}
\elib{https://elibrary.ru/item.asp?id=9188338}
\transl
\jour Discrete Math. Appl.
\yr 2006
\vol 16
\issue 2
\pages 99--108
\crossref{https://doi.org/10.1515/156939206777344610}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746084147}
Linking options:
  • https://www.mathnet.ru/eng/dm38
  • https://doi.org/10.4213/dm38
  • https://www.mathnet.ru/eng/dm/v18/i1/p146
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024