|
This article is cited in 5 scientific papers (total in 5 papers)
Weakly implicative selector sets of dimension 3
A. N. Degtev, D. I. Ivanov
Abstract:
For an
$n$-place Boolean function $\beta$, we define a class $K(\beta)$ of weakly
$\beta$-implicatively selective sets, which are subsets of the set of
natural numbers.
The dimension of the class $K(\beta)$ is the number of essential variables
of the function $\beta$. We describe, up to inclusion, all classes
$K(\beta)$ of dimension 2 and 3, excepting one case.
Received: 11.05.1997 Revised: 11.02.1998
Citation:
A. N. Degtev, D. I. Ivanov, “Weakly implicative selector sets of dimension 3”, Diskr. Mat., 11:3 (1999), 126–132; Discrete Math. Appl., 9:4 (1999), 395–402
Linking options:
https://www.mathnet.ru/eng/dm379https://doi.org/10.4213/dm379 https://www.mathnet.ru/eng/dm/v11/i3/p126
|
Statistics & downloads: |
Abstract page: | 301 | Full-text PDF : | 173 | First page: | 1 |
|