Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2006, Volume 18, Issue 1, Pages 116–125
DOI: https://doi.org/10.4213/dm36
(Mi dm36)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the reliability of schemes in the basis $\{x\vee y\vee z,x\mathbin{\&}y\mathbin{\&}z,\bar{x}\}$ with single-type constant faults at the inputs of the element

M. A. Alekhina
Full-text PDF (698 kB) Citations (1)
References:
Abstract: We consider realisation of Boolean functions over the basis $\{x \vee y \vee z, x\mathbin{\&}y \mathbin{\&}z, \bar{x}\}$ by circuits of unreliable functional elements which are subject to single-type constant faults at inputs of the elements. Let $\gamma$ be the probability of a fault at an input of an element. By the unreliability of a circuit is meant the greatest probability of error at its output. In this paper, we find the asymptotically best realisation of an arbitrary Boolean function $f(x_1,\dots,x_n)$ such that the functions $x_i$, $i=1,2,\dots,n$, are realised absolutely reliably, the constants 0 and 1 are realised as reliably as we wish, and the remaining functions are realised with unreliability asymptotically equal to $\gamma^3$ as $\gamma\to 0$.
This research was supported by the Scientific Program ‘Universities of Russia,’ grant 04.01.032.
Received: 05.11.2004
English version:
Discrete Mathematics and Applications, 2006, Volume 16, Issue 2, Pages 195–203
DOI: https://doi.org/10.1515/156939206777344584
Bibliographic databases:
UDC: 519.718
Language: Russian
Citation: M. A. Alekhina, “On the reliability of schemes in the basis $\{x\vee y\vee z,x\mathbin{\&}y\mathbin{\&}z,\bar{x}\}$ with single-type constant faults at the inputs of the element”, Diskr. Mat., 18:1 (2006), 116–125; Discrete Math. Appl., 16:2 (2006), 195–203
Citation in format AMSBIB
\Bibitem{Ale06}
\by M.~A.~Alekhina
\paper On the reliability of schemes in the basis $\{x\vee y\vee z,x\mathbin{\&}y\mathbin{\&}z,\bar{x}\}$ with single-type constant faults at the inputs of the element
\jour Diskr. Mat.
\yr 2006
\vol 18
\issue 1
\pages 116--125
\mathnet{http://mi.mathnet.ru/dm36}
\crossref{https://doi.org/10.4213/dm36}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2254739}
\zmath{https://zbmath.org/?q=an:1121.94032}
\elib{https://elibrary.ru/item.asp?id=9188336}
\transl
\jour Discrete Math. Appl.
\yr 2006
\vol 16
\issue 2
\pages 195--203
\crossref{https://doi.org/10.1515/156939206777344584}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746086385}
Linking options:
  • https://www.mathnet.ru/eng/dm36
  • https://doi.org/10.4213/dm36
  • https://www.mathnet.ru/eng/dm/v18/i1/p116
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024